PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modal characterization of sandwich skew plates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current work focuses on the experimental and finite element free vibration studies of laminated composite sandwich skew plates. The comparison was made between the experimental values obtained by the Fast Fourier transform (FFT) analyzer and a finite el-ement solution obtained from CQUAD8 finite element of The MacNeal-Schwendler Corporation (MSC) / NASA STRucture Analysis (NAS-TRAN) software. The influence of parameters such as aspect ratio (AR) (a/b), skew angle (α), edge condition, laminate stacking sequence, and fiber orientation angle (θ°) on the natural frequencies of sandwich skew plates was studied. The values obtained by both the finite el-ement and experiment approaches are in good agreement. The natural frequencies increase with an increase in the skew angle for all giv-en ARs.
Rocznik
Strony
143--153
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Research Scholar, Department of Mechanical Engineering, GM Institute of Technology,Davangere, Visvesvaraya Technological University, Jnana Sangama, VTU Main Rd, Machhe, Belagavi, Karnataka 590018, India
  • Head, Department of Mechanical Engineering, GM Institute of Technology, Davangere, Visvesvaraya Technological University, Jnana Sangama, VTU Main Rd, Machhe, Belagavi, Karnataka 590018, India
Bibliografia
  • 1. Abdi B., Azwan S., Ayob A., Rahman R.A., Abdullah R.A. (2014), Experimental Investigation on Free Vibration of Foam-Core Sandwich Plate with and without Circular Polymer Columns, Advanced Materials Research , 845, 297-301.
  • 2. Adarsh K., Ramesh S.S. (2015), Modal Analysis and Testing of Honeycomb Sandwich Composites, Topics in Modal Analysis, Volume 10, Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, Springer International Publishing, 237-241.
  • 3. Aman G., Chalak H.D. (2019), A review on analysis of laminated composite and sandwich structures under hygrothermal conditions, Thin-Walled Structures, 142, https://doi.org/10.1016/j.tws.2019.05. 005.
  • 4. Aman G., Chalak H.D. (2020), Analysis of non-skew and skew laminated composite and sandwich plates under hygro-thermo mechanical conditions including transverse stress variations, Journal of Sandwich Structures and Materials, DOI: 10.1177/109963622093 2782.
  • 5. Aman G., Mohamed O.B., Chalak H.D., Anupam C. (2020), A review of the analysis of sandwich FGM structures, Composite Structures, https://doi.org/10.1016/j.compstruct.2020.113427.
  • 6. Andena L., Manconi E., Manzoni S., Moschini S., Vanali M. (2012), Experimental tests and numerical modeling of a sandwich panel, 25th International Conference on Noise and Vibration engineering (ISMA2012), 4th International Conference on Uncertainty in Structural Dynamics (USD2012), Leuven.
  • 7. Arunkumar M.P., Jeyaraj P., Ganga Dharan K.V., Surya Narayana Reddy C.V. (2020), Numerical and experimental study on dynamic characteristics of honeycomb core sandwich panel from equivalent 2D model, Sadhana, 45, 206, 1-6.
  • 8. Barkanov E., Chate A., Skukis E., Täger O., Kolsters H. (2005), Finite element and experimental vibration analysis of viscoelastic composite structures, Computational Methods and Experimental Measurements XII, 41, 527-537.
  • 9. Benjeddou A., Guerich M. (2019), Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach, Advances in Aircraft and Spacecraft Science, 6(2), 169-187.
  • 10. Berthelot J.M., Assarar M., Sefrani Y., Mahi A.E. (2008), Damping analysis of composite materials and structures, Composite Structures, 85, 189–204.
  • 11. Chang J.S., Chen H.C., Lin H.T. (2006), Numerical and experimental studies on aluminum sandwich plates of variable thickness, Journal of the Chinese Institute of Engineers, 29(5), 851-862.
  • 12. Jones R.M. (1999), Mechanics of Composite Materials, Taylor and Francis.
  • 13. Jun L.,Congkuan H., Wenbin Y., Fan Y., Gao L. (2021), Free vibration and transient dynamic response of functionally graded sandwich plates with power-law nonhomogeneity by the scaled boundary finite element method, Computer Methods in Applied Mechanics and Engineering, 376, https://doi.org/10.1016/j.cma. 2021.113665.
  • 14. Lee C.R., Kam T.Y., Sun S.J. (2007), Free-Vibration Analysis and Material Constants Identification of Laminated Composite Sandwich Plates, Journal of Engineering Mechanics, 133 (8), 874-886.
  • 15. Maheri M.R., Adams R.D., Hugon J. (2008), Vibration damping in sandwich panels, Journal of Material Science, 43, 6604–6618.
  • 16. Mondal S., Patra A.K., Chakraborty S., Mitra N. (2015), Dynamic performance of sandwich composite plates with circular hole/cut-out: A mixed experimental–numerical study, Composite Structures, 131, 479–489.
  • 17. Pavan K., Srinivasa C.V. (2020), Free vibration studies on skew sandwich plates by FEM, IOP Conference Series: Materials Science and Engineering, 925, 012024, Doi:10.1088/1757-899X/925/1/ 012024.
  • 18. Pavan K., Srinivasa C.V. (2020), On buckling and free vibration studies of sandwich plates and cylindrical shells: A review, Journal of thermoplastic composite materials, 33 (5), 1-51.
  • 19. Pavan K.D., Srinivasa C.V. (2021), On free vibration of laminated skew sandwich plates: A Finite element analysis, Nonlinear Engineering, https://doi.org/10.1515/nleng-2021-0006, 2021.
  • 20. Petrone G., Alessandro V.D., Franco F., Mace B., De Rosa S. (2014), Modal characterisation of recyclable foam sandwich panels, Composite Structures, 113, 362–368.
  • 21. Prasad E.V., Sahu S.K. (2018), Vibration Analysis of Woven Fiber Metal Laminated Plates — Experimental and Numerical Studies, International Journal of Structural Stability and Dynamics, 18, 1850144-1-23.
  • 22. Rajkumar S., Ravindran D., Ramesh S.S., Raghupathy V.P. (2014), Evaluation of elastic constants of A3003 honeycomb core with varying hexagonal cell geometries through finite element approach, Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 203-210, DOI: 10.1177/0954406213510491.
  • 23. Raville M.E., Ueng C.E.S. (1967), Determination of Natural Frequencies of Vibration of a Sandwich Plate, Experimental Mechanics, 7, 490-493, https://doi.org/10.1007/BF02326265.
  • 24. Rezvani S.S., Kiasat M.S. (2018), Analytical and experimental investigation on the free vibration of a floating composite sandwich plate having viscoelastic core, Archives of Civil and Mechanical Engineering, 18, 1241-1258.
  • 25. Su Bin L., Chang-Yong. L., Dewey H.H. (2020), On the mechanics of composite sandwich plates with three-dimensional stress recovery, International Journal of Engineering Science, 157.
  • 26. Vinayak K., Balaji K., Kattimani S.C. (2020), Effect of temperature and moisture on free vibration characteristics of skew laminated hybrid composite and sandwich plates, Thin–Walled Structures, 157, https://doi.org/10.1016/j.tws.2020.107113.
  • 27. Yang J.S., Xiong J., Ma L., Wu L.Z. (2014), Vibration and damping performances of carbon fiber composite pyramidal truss sandwich panels embedded with viscoelastic layers, ECCM16 - 16TH European conference on composite materials, Seville, Spain, 22-26.
  • 28. Zhicheng H., Xingguo W., Nanxing W., Fulei C., Jing L. (2020), The Finite Element Modeling and Experimental Study of Sandwich Plates with Frequency-Dependent Viscoelastic Material Model, Materials, 13, 2296, Doi:10.3390/ma13102296.
  • 29. Zhuang L. (2006), Vibration and acoustical properties of sandwich composite, Degree of Doctor of Philosophy, Auburn University, Auburn, Alabama.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b5c9d7a-120d-4563-b3da-635cf1407b04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.