PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling population density using artificial neural networks from open data

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie gęstości ludności z wykorzystaniem sztucznych sieci neuronowych na podstawie otwartych danych
Języki publikacji
EN
Abstrakty
EN
This paper introduces the concept of creating a model for population density prediction and presents the work done so far. The unit of reference in the study is more the population density of a location rather than tracking human movements and habits. Heterogeneous open data, which can be obtained from the World Wide Web, was adopted for the analysis. Commercial telephony data or social networking applications were intentionally omitted. Both for data collection and later for modeling the potential of artificial neural networks was used. The potential of detection models such as YOLO or ResNet was explored. It was decided to focus on a method of acquiring additional data using information extraction from images and extracting information from web pages. The BDOT database and statistical data from the Central Statistical Office (polish: GUS) were adopted for the base model. It was shown that the use of street surveillance cameras in combination with deep learning methods gives an exam.
PL
W niniejszej pracy przedstawiono koncepcję stworzenia modelu do predykcji gęstości ludności oraz przedstawiono wykonane dotychczas prace. Jednostką odniesienia w badaniach jest bardziej gęstość ludności w danym miejscu niż śledzenie ruchów i nawyków człowieka. Do analizy przyjęto heterogeniczne otwarte dane, które można pozyskać z sieci WWW. Celowo pominięto komercyjne dane telefonii czy aplikacji społecznościowych. Zarówno do gromadzenia danych jak i później do modelowania wykorzystano potencjał sztucznych sieci neuronowych. Zbadano potencjał modeli detekcyjnych takich jak YOLO czy ResNet. Postanowiono skupić się na metodzie pozyskiwania dodatkowych danych z wykorzystaniem ekstrakcji informacji z obrazu oraz pozyskiwania informacji ze stron WWW. Do modelu bazowego przyjęto bazę danych BDOT oraz dane statystyczne z GUS. Wykazano, że wykorzystanie kamer monitoringu ulic w połączeniu z metodami głębokiego uczenia daje egzamin.
Czasopismo
Rocznik
Strony
31--43
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Wroclaw University of Environment and Life Sciences, Institute of Geodesy and Geoinformatics Wroclaw Institute of Spatial Information and Artificial Intelligence
Bibliografia
  • Adamec, V., Herman, D., Schullerova, B., & Urbanek, M. (2019). Modelling of Traffic Load by the DataFromSky System in the Smart City Concept. Smart Governance for Cities: Perspectives and Experiences EAI/Springer Innovations in Communication and Computing,135-152. doi:10.1007/978-3-030-22070-9_7
  • Chen, P., Hsieh, J., Gochoo, M., Wang, C., & Liao, H. M. (2019). Smaller Object Detection for Real-Time Embedded Traffic Flow Estimation Using Fish-Eye Cameras. 2019 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2019.8803719
  • Costache, R., Pham, Q. B., Sharifi, E., Linh, N. T., Abba, S., Vojtek, M., . . . Khoi, D. N. (2019). Flash-Flood Susceptibility Assessment Using Multi-Criteria Decision Making and Machine Learning Supported by Remote Sensing and GIS Techniques. Remote Sensing,12(1), 106. doi:10.3390/rs12010106
  • Kong, X., Xia, F., Wang, J., Rahim, A., & Das, S. K. (2017). Time-Location-Relationship Combined Service Recommendation Based on Taxi Trajectory Data. IEEE Transactions on Industrial Informatics,13(3), 1202-1212. doi:10.1109/tii.2017.2684163
  • Kong, X., Li, M., Li, J., Tian, K., Hu, X., & Xia, F. (2018). CoPFun: An urban co-occurrence pattern mining scheme based on regional function discovery. World Wide Web,22(3), 1029-1054. doi:10.1007/s11280-018-0578-x
  • Liao, Y., Yeh, S., & Gil, J. (2021). Feasibility of estimating travel demand using geolocations of social media data. Transportation. doi:10.1007/s11116-021-10171-x
  • Panphattarasap, P., & Calway, A. (2018). Automated Map Reading: Image Based Localisation in 2-D Maps Using Binary Semantic Descriptors. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). doi:10.1109/iros.2018.8594253
  • Pham, B. T., Phong, T. V., Nguyen-Thoi, T., Trinh, P. T., Tran, Q. C., Ho, L. S., . . . Prakash, I. (2020). GIS-based ensemble soft computing models for landslide susceptibility mapping. Advances in Space Research,66(6), 1303-1320. doi:10.1016/j.asr.2020.05.016
  • Pham, Q. B., Abba, S. I., Usman, A. G., Linh, N. T., Gupta, V., Malik, A., . . . Tri, D. Q. (2019). Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall. Water Resources Management,33(15), 5067-5087. doi:10.1007/s11269-019-02408-3
  • Qin, Z., Li, Z., Zhang, Z., Bao, Y., Yu, G., Peng, Y., & Sun, J. (2019). ThunderNet: Towards Real-Time Generic Object Detection on Mobile Devices. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2019.00682
  • Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. (2019). Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2019.00075
  • Sachdeva, S., Bhatia, T., & Verma, A. K. (2019). A novel voting ensemble model for spatial prediction of landslides using GIS. International Journal of Remote Sensing,41(3), 929-952. doi:10.1080/01431161.2019.1654141
  • Sassi, A., Brahimi, M., Bechkit, W., & Bachir, A. (2019). Location Embedding and Deep Convolutional Neural Networks for Next Location Prediction. 2019 IEEE 44th LCN Symposium on Emerging Topics in Networking (LCN Symposium). doi:10.1109/lcnsymposium47956.2019.9000680
  • Shafizadeh-Moghadam, H., Valavi, R., Shahabi, H., Chapi, K., & Shirzadi, A. (2018). Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. Journal of Environmental Management,217, 1-11. doi:10.1016/j.jenvman.2018.03.089
  • Smolak, K., Rohm, W., Knop, K., & Siła-Nowicka, K. (2020). Population mobility modelling for mobility data simulation. Computers, Environment and Urban Systems,84, 101526. doi:10.1016/j.compenvurbsys.2020.101526
  • Smolak, K., Kasieczka, B., Fialkiewicz, W., Rohm, W., Siła-Nowicka, K., & Kopańczyk, K. (2020). Applying human mobility and water consumption data for short-term water demand forecasting using classical and machine learning models. Urban Water Journal,17(1), 32-42. doi:10.1080/1573062x.2020.1734947
  • Tang, K., Paluri, M., Fei-Fei, L., Fergus, R., & Bourdev, L. (2015). Improving Image Classification with Location Context. 2015 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2015.121
  • Tenerelli, P., Gallego, J. F., & Ehrlich, D. (2015). Population density modelling in support of disaster risk assessment. International Journal of Disaster Risk Reduction,13, 334-341. doi:10.1016/j.ijdrr.2015.07.015
  • Tsubouchi, K., Kobayashi, H., & Shimizu, T. (2020). POI Atmosphere Categorization Using Web Search Session Behavior. Proceedings of the 28th International Conference on Advances in Geographic Information Systems. doi:10.1145/3397536.3422196
  • Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2021). Scaled-YOLOv4: Scaling Cross Stage Partial Network. arXiv [cs.CV]. Opgehaal van http://arxiv.org/abs/2011.08036
  • Wang, J., Kong, X., Xia, F., & Sun, L. (2019). Urban Human Mobility. ACM SIGKDD Explorations Newsletter,21(1), 1-19. doi:10.1145/3331651.3331653
  • Xia, F., Liu, L., Li, J., Ahmed, A. M., Yang, L. T., & Ma, J. (2015). BEEINFO: Interest-Based Forwarding Using Artificial Bee Colony for Socially Aware Networking. IEEE Transactions on Vehicular Technology,64(3), 1188-1200. doi:10.1109/tvt.2014.2305192
  • Xia, F., Liu, L., Jedari, B., & Das, S. K. (2016). PIS: A Multi-Dimensional Routing Protocol for Socially-Aware Networking. IEEE Transactions on Mobile Computing,15(11), 2825-2836. doi:10.1109/tmc.2016.2517649
  • Yang, Q., Wang, J., Song, X., Kong, X., Xu, Z., & Zhang, B. (2015). Urban Traffic Congestion Prediction Using Floating Car Trajectory Data. Algorithms and Architectures for Parallel Processing Lecture Notes in Computer Science,18-30. doi:10.1007/978-3-319-27122-4_2
  • Yun, S., Han, D., Chun, S., Oh, S. J., Yoo, Y., & Choe, J. (2019). CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2019.00612
  • Zheng, Y. (2015). Trajectory Data Mining. ACM Transactions on Intelligent Systems and Technology,6(3), 1-41. doi:10.1145/2743025
  • Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., & Ren, D. (2019, November 19). Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. Retrieved from https://arxiv.org/abs/1911.08287
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b5baaee-e68e-4d36-b7c8-a1b850fdfbc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.