PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of degree of crystallinity for the LTA zeolite using artificial neural networks

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Zeolites are microporous aluminosilicate/silicate crystalline materials with three-dimensional tetrahedral configuration. In this study, the degree of crystallinity of the synthesized Linde Type A (LTA) zeolite, which is the main indicator of its quality/purity is tried to be modeled. Effect of crystallization time, temperature, molar ratio of the synthesis gel on the relative crystallinity of the LTA zeolites is investigated using artificial neural networks. Our experimental observations and some data collected from literature have been used for adjusting the parameters of the proposed model and evaluating its performance. It has been observed that two-layer perceptron network with eight hidden neurons is the most accurate approach for the considered task. The designed model predicts the experimental datasets with a mean square error of 3.99 × 10−6, absolute average relative deviation of 8.69 %, and regression coefficient of 0.9596. The proposed model can decrease the required time and number of experiments to evaluate the extent of crystallinity of the LTA zeolites.
Wydawca
Rocznik
Strony
486--495
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • Department of Chemical Engineering, Malek-Ashtar University of Technology, Tehran, Iran
autor
  • Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
Bibliografia
  • [1] GUO Y.H., PU M., LIU L.Y., LI H.F., CHEN B.H., Comp. Mater. Sci., 42 (2008), 179.
  • [2] BENCO L., DEMUTH T., HUTSCHKA F., Comp. Mater. Sci., 27 (2003), 87.
  • [3] CHONG S.X., WAHAB H.A., ABDALLAH H.H., Comp. Mater. Sci., 55 (2012), 217.
  • [4] HOU J., YUAN J., SHANG R., Powder. Technol., 226 (2012), 222.
  • [5] NASKAR M.K., DAS A., KUNDU D., CHATTERJEE M., B. Mater. Sci., 34 (2011), 651.
  • [6] SHANG J., LI G., WEBLEY P.A., LIU J.Z., Comp. Mater. Sci., 122 (2016), 307.
  • [7] MAHADWAD O.K., PARIKH P.A., JASRA R.V., PATIL C., B. Mater. Sci., 34 (2011), 551.
  • [8] CHARKHI A., KAZEMEINI M., AHMADI S.J., KAZEMIAN H., Powder. Technol., 231 (2012), 1.
  • [9] KAZEMIAN H., MODARRESS H., KAZEMI M., FARHADI F., Powder. Technol., 196 (2009), 22.
  • [10] KIM D.S., CHANG J.S., HWANG J.S., PARK S.E., KIM J.M., Micropor. Mesopor. Mat., 68 (2004), 77.
  • [11] ELNEKAVE M., TATLIER M., Chem. Eng. Commun., 195 (2008), 661.
  • [12] LIU X.D., WANG Y.P., CUI X.M., HE Y., MAO J., Powder. Technol., 243 (2013), 184.
  • [13] BOSNAR S., BRONIC J., BRLEK D., SUBOTIC B., Micropor. Mesopor. Mat., 142 (2011), 389.
  • [14] CIRIC J., J. Colloid. Interf. Sci., 28 (1968), 315.
  • [15] KRZNARIC I., ANTONIC T., SUBOTIC B., BABICIVANCIC V., Thermochim. Acta, 317 (1998), 73.
  • [16] BOSNAR S., ANTONIC-JELIC T., BRONIC J., KRZNARIC I., SUBOTIC B., J. Cryst. Growth, 267 (2004), 270.
  • [17] CIRIC J., Science, 155 (1967), 689.
  • [18] TANAKA H., FUJII A., FUJIMOTO S., TANAKA Y., Powder. Technol., 19 (2008), 83.
  • [19] ANSARI M., AROUJALIAN A., RAISI A., DABIR B., FATHIZADEH M., Adv. Powder. Technol., 25 (2014), 722.
  • [20] CHAUHAN Y.P., TALIB M., Sci. Rev. Chem. Ccommun., 2 (2012), 12.
  • [21] GARCIA-SETO A.R., RODRIGUEZ-NINO G., TRUJILLO C.A., Ing. Invest., 33 (2013), 22.
  • [22] MURAT M., AMOKRANE A., BASTIDE J.P., MONTANARO L., Clay Miner., 27 (1992), 119.
  • [23] PARK J., KIM B.C., PARK S.S., PARK H.C., J. Mater. Sci. Lett., 20 (2001), 531.
  • [24] HERRMANN R., SCHWIEGER W., SCHARF O., STENZAL C., TOUFAR H., ZCHMACHTL M., ZIBERI B., GRILL W., Micropor. Mesopor. Mat., 80 (2005), 1.
  • [25] THOMPSON R.W., FRANKLIN K.C., Linde Type A, in: H. ROBSON (Ed.), Verified Synthesis of Zeolititic Materials, Elsevier, Amesterdam, 2001.
  • [26] TOSHEVA L., VALTCHEV V.P., Chem. Mater., 17 (2005), 2494.
  • [27] CHEN J., YEA Y., Chem. Eng. Commun., 189 (2002), 865.
  • [28] KO Y.D., SHANG H., Powder. Technol., 205(2011), 250.
  • [29] LASHKARBOLOOKI M., VAFERI B., RAHIMPOUR M.R., Fluid Phase Equilibr., 308 (2011), 35.
  • [30] LASHKARBOLOOKI M., VAFERI B., SHARIATI A., ZEINOLABEDINI HEZAVE A., Fluid Phase Equilibr., 343 (2013), 24.
  • [31] ARTRITH N., URBAN A., Comp. Mater. Sci., 114 (2016), 135.
  • [32] CASTIN N., FERNANDEZ J.R., PASIANOT R.C., Comp. Mater. Sci., 84 (2014), 217.
  • [33] VAFERI B., ESLAMLOUEYAN R., AYATOLLAHI S., J. Petrol. Sci. Eng., 77 (2011), 254.
  • [34] VAFERI B., KARIMI M., AZIZI M., ESMAEILI H., J. Supercrit. Fluid., 77 (2013), 44.
  • [35] VAFERI B., RAHNAMA Y., DARVISHI P., TOORANI A., LASHKARBOLOOKI M., J. Supercrit. Fluid., 84 (2013), 80.
  • [36] JACK L.B., NANDI A.K., Mech. Syst. Signal Pr., 16 (2002), 373.
  • [37] SUN Y., ZENG W.D., HAN Y.F., MA X., ZHAO Y.Q., Comp. Mater. Sci., 50 (2011), 1064.
  • [38] MOHAMMAD A.T., MAT S.B., SULAIMAN M.Y., SOPIAN K., AL-ABIDI A.A., Energ. Convers. Manage., 67 (2013), 240.
  • [39] ELMAN J.L., Cognitive Sci., 14 (1990), 179.
  • [40] VAFERI B., SAMIMI F., PAKGOHAR E., MOWLA D., Powder. Technol., 267 (2014), 1.
  • [41] ELISH M.O., Expert Syst. Appl., 36 (2009), 10774.
  • [42] SPECHT D.F., IEEE T. Neur. Net., 2 (1991), 568.
  • [43] HOPFIELD J.J., Proc. Nat. Acad. Sci., 79 (1982), 2554.
  • [44] CYBENKO G.V., Math. Control Signal, 2 (1989), 303.
  • [45] FUNAHASHI K.I., Neural Networks, 2 (1989), 183.
  • [46] HORNIK K., STINCHCOMBE M., WHITE H., Neural Networks, 2 (1989), 359.
  • [47] DU K.L., SWAMY M.N.S., Neural Networks in a Soft computing Framework, Springer, London, 2006.
  • [48] REED R., IEEE T. Neur. Net., 4 (1993), 740.
  • [49] BURRIESCI N., CRISAFULLI M.L., Mater. Lett., 2 (1984), 401.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b5a8289-1152-471a-a9ef-42c71e6610f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.