PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurements of the responsivity of FET‐based detectors of sub‐THz radiation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article describes a novel approach to measure responsivity of a FET-based sub-THz detector using on-wafer probes to directly feed a bare antenna-less detecting device. Thus, the approach eliminates the need to know beforehand the detector’s effective aperture, which can be a source of large variation between responsivity measurements of various FET-based detectors often cited in the literature. It seems that the presented method can be useful at making direct comparisons between responsivity of various devices (e.g., MOSFETs, HEMTs etc.). As a demonstration, the sub-THz responsivity of a pHEMT device fabricated using a commercial GaAs process has been measured in a WR-3 frequency band. Additionally, the results have been compared against data obtained using an alternative approach. The verification method consisted in integrating exactly the same device with a broad-band antenna and a carefully selected high-resistivity silicon lens and comparing its performance with that of a commercial calibrated detector based on Schottky diodes.
Twórcy
autor
  • Inst. of Radioelectronics and Multimedia Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665, Warsaw, Poland
  • Inst. of Radioelectronics and Multimedia Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665, Warsaw, Poland
  • Inst. of Radioelectronics and Multimedia Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665, Warsaw, Poland
  • Inst. of Optoelectronics, Military University of Technology, ul. gen. Witolda Urbanowicza 2, 00-908, Warsaw, Poland
  • Institute of Electron Technology, Al. Lotnikow 32/46, 02-668, Warszawa, Poland
Bibliografia
  • [1] M. Dyakonov, M. Shur, Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid, IEEE Trans. Electron Devices 43 (3) (1996) 380–387.
  • [2] S. Boppel, et al., CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3THz, IEEET rans. Microw. Theory Technol. 60 (12) (2012) 3834–3843.
  • [3] P.H. Siegel, Terahertz technology, IEEE Trans. Microw. Theory Technol. 50 (3) (2002) 910–928.
  • [4] J.L. Hesler, L. Liu, H. Xu, Y. Duan, R.M. Weikle, The developmen to fquasi-optical THz detectors, in: 33rd International Conference on Infrared and Millimeter Waves and the16th International Conference on Terahertz Electronics, 1-3, IRMMW-THz, 2008.
  • [5] J. Marczewski, W. Knap, D. Tomaszewski, M. Zaborowski, P. Zagrajek, Silicon junctionless field effect transistors as room temperature terahertz detectors, J. Appl. Phys. 118 (2015) 104502.
  • [6] W. Knap, et al., Nonresonant detection of terahertz radiation in field effect transistors, J. Appl. Phys. 91 (2002) 9346.
  • [7] M. Sakowicz, J. Łusakowski, K. Karpierz, M. Grynberg, W. Knap, W. Gwarek, Polarization sensitive detection of 100GHz radiation by highmobilityfield-effect transistors, J. Appl. Phys. 104 (2008) 024519.
  • [8] U. R. Pfeiffer, E. Öjefors, A 600-GHz CMOS focal-plane array for terahertz imaging applications, in: in ESSCIRC 2008-Proceedings of the 34th European Solid-State Circuits Conference, 2008
  • [9] R. Al Hadi, etal., Abroad band 0.6 to 1 THz CMOS imaging detector with an integrated lens, IEEE MTTS Int. Microw. Symp. (2011).
  • [10] F. Schuster, et al., Abroadband THz imager in a low-cost CMOS technology, in: Digest of Technical Papers-IEEE International Solid-State Circuits Conference, 2011.
  • [11] R. Jain, H. Rucker, U. R. Pfeiffer, Zerogate-biasterahertz detection with an asymmetric NMO Stransistor, in: International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, 2016.
  • [12] E. Öjefors, N. Baktash, Y. Zhao, R. Al Hadi, H. Sherry, U.R .Pfeiffer, Terahertz imaging detectors in a 65-nm CMOS SOI technology, in: ESSCIRC 2010-36th European Solid State Circuits Conference, 2010, pp. 486–489.
  • [13] P. Kopyt, et al., On-wafer measurements of responsivity of FET-based subTHz detectors, in: IEEE MTT-S International Microwave Symposium Digest, 2018, pp.946–948, 2018–June.
  • [14] P. Kopyt, B. Salski, J. Cuper, P. Zagrajek, J. Bar, D. Obrebski, Broadband quasi-optical sub-THz detector based on GaAs HEMT, in: MIKON 2018-22nd International Microwave and Radar Conference, 2018, pp. 159–160.
  • [15] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd edition, Wiley-Interscience, USA, 2005, 3rd Edition.
  • [16] Nominal Horn Specifications, Virginia Diodes Inc., 1998.
  • [17] E. Hecht, Optics, Addison Wesley, 1998.
  • [18] D.F. Filipovic, S.S. Gearhart, G.M. Rebeiz, Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses, IEEE Trans. Microw. Theory Technol. 41 (10) (1993) 1738–1749.
  • [19] QuickWave 3D, 2018.
  • [20] User Guide for the100-1000GHz Quasi-Optical Detector with Internal ESD Protection, 2011.
Uwagi
1. This work was partially supported by the National Center for Research and Development in Poland under the LIDER/020/319/L-5/13/NCBR/2014 contract and by the Foundation for Polish Science as the grant no TEAM-TECH/2016-1/3.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b5865e4-1a72-43e8-9484-8444fb78b015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.