Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A uniformly convergent higher-order finite difference scheme is constructed and analyzed for solving singularly perturbed parabolic problems with non-smooth data. This scheme involves an average non-standard finite difference with the Richardson extrapolation method for space variables and second-order finite difference approximation for time direction on uniform meshes. The scheme is shown to be second-order convergent in both temporal and spatial directions. Further, the scheme is proven to be uniformly convergent and also confirmed by numerical experiments. Wide numerical experiments are conducted to support the theoretical results and to demonstrate its accuracy. Concisely, the present scheme is stable, convergent, and more accurate than existing methods in the literatur
Rocznik
Tom
Strony
5--16
Opis fizyczny
Bibliogr. 19 poz. rys., tab.
Twórcy
autor
- Department of Mathematics, Jimma University, Jimma, Ethiopia
autor
- Institut De Mathematiques et de sciences physiques, Universit D'Abomey Calavi, Benin
autor
- Department of Mathematics, Jimma University, Jimma, Ethiopia
Bibliografia
- [1] Chandru, M., Das, P., & Ramos, H. (2018). Numerical treatment of two-parameter singularly perturbed parabolic convection-diffusion problems with non-smooth data. Mathematical Method in Applied Sciences, 1-29, DOI: 10.1002/mma.5067.
- [2] Das, P., & Mehrman, V. (2015). Numerical solution of singularly perturbed convection-diffusionreaction problems with two small parameters. BIT Numerical Mathematics, DOI: 10.1007/s10543-015-0559-8.
- [3] Gowrisankar, S., & Srinivasan, N. (2014). Robust numerical scheme for singularly perturbed convection-diffusion parabolic initial-boundary-value problems on equidistributed grids. Computer Physics Communications, 185, 2008-2019.
- [4] Gracia, J.L., & O’Riordan, E. (2019). Singularly perturbed reaction-diffusion problems with discontinuities in the initial and/or the boundary data. Journal of Computational and Applied Mathematics, 370, 112638, DOI: 10.1016/j.cam.2019.112638.
- [5] Gupta, V., Kadalbajoo, M.K., & Dubey, R.K. (2018). A parameter-uniform higher-order finite difference scheme for singularly perturbed time-dependent parabolic problem with two small parameters. International Journal of Computer Mathematics, DOI: 10.1080/00207160.2018. 1432856.
- [6] Jha, A., & Kadalbajoo, M.K. (2015). A robust layer adapted difference method for singularly perturbed two-parameter parabolic problems. International Journal of Computer Mathematics, 92, 1204-1221.
- [7] Mickens, R.E. (2005). Advances in the Applications of Nonstandard Finite Difference Schemes. Singapore: World Scientific Publishing.
- [8] Mickens, R.E. (1994). Nonstandard Finite Difference Models of Differential Equations. Singapore: World Scientific Publishing.
- [9] Miller, H.J.J., O’Riordan, E., & Shishkin, I.G. (1996). Fitted Numerical Methods for Singular Perturbation Problems, Error Estimate in the Maximum Norm for Linear Problems in One and Two Dimensions. Singapore: World Scientific Publishing.
- [10] Mukherjee, K., & Natesan, S. (2011). Optimal error estimate of the upwind scheme on Shishkintype meshes for singularly perturbed parabolic problems with discontinuous convection coefficients. BIT Numerical Mathematics, 51, 289-315, DOI: 10.1007/s10543-010-0292-2.
- [11] Mukherjee, K., & Natesan, S. (2011). – Uniform error estimate of a hybrid numerical scheme for singularly perturbed parabolic problems with interior layers. Numerical Algorithms, 58, 103-141, DOI: 10.1007/s11075-011-9449-6.
- [12] Tesfaye, A.B., Gemechis, F.D., & Degla, G.A. (2020). Robust finite difference method for singularly perturbed two-parameter parabolic convection-diffusion problems. International Journal of Computational Methods, DOI: 10.1142/S0219876220500346.
- [13] Munyakazi, J.B. (2015). A robust finite difference method for two-parameter parabolic convection-diffusion problems. An International Journal of Applied Mathematics and Information Sciences, 9, 2877-2883.
- [14] Munyakazi, J.B., & Patidar, K.C. (2013). A fitted numerical method for singularly perturbed parabolic reaction-diffusion problems. Computational and Applied Mathematics, 32, 509-519.
- [15] Munyakazi, J.B., Patidar, K.C., & Mbani, T.S. (2019). A fitted numerical method for parabolic turning point singularly perturbed problems with an interior layer. Numerical Methods for Partial Differential Equations, 35, 2407-2422.
- [16] O’Riordan, E., & Shishkin, G.I. (2004). Singularly perturbed parabolic problems with non-smooth data. Journal of Computational and Applied Mathematics, 166, 233-245.
- [17] Rajan, M.P., & Reddy, G.D. (2015). An iterative technique for solving singularly perturbed parabolic PDE. Journal of Applied Mathematics and Computing, DOI: 10.1007/s12190-015-0866-x.
- [18] Roos, G.H, Stynes, M., & Tobiska, L. (2008). Robust Numerical Methods for Singularly Perturbed Differential Equations, Convection-Diffusion-Reaction and Flow Problems, Second Edition. Berlin, Heidelberg: Springer-Verlag.
- [19] Tesfaye, A.B., Gemechis, F.D., & Degla, G.A. (2019). Higher-order fitted operator finite difference method for two-parameter parabolic convection-diffusion problems. International Journal of Engineering and Applied Sciences (IJEAS), 11, 455-467.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b56c766-f010-4771-ba72-057a3a4f5bbd