PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrating Petri Nets and Flux Balance Methods in Computational Biology Models : a Methodological and Computational Practice

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computational Biology is a fast-growing field that is enriched by different data-driven methodological approaches and by findings and applications in a broad range of biological areas. Fundamental to these approaches are the mathematical and computational models used to describe the different states at microscopic (for example a biochemical reaction), mesoscopic (the signalling effects at tissue level), and macroscopic levels (physiological and pathological effects) of biological processes. In this paper we address the problem of combining two powerful classes of methodologies: Flux Balance Analysis (FBA) methods which are now producing a revolution in biotechnology and medicine, and Petri Nets (PNs) which allow system generalisation and are central to various mathematical treatments, for example Ordinary Differential Equation (ODE) specification of the biosystem under study. While the former is limited to modelling metabolic networks, i.e. does not account for intermittent dynamical signalling events, the latter is hampered by the need for a large amount of metabolic data. A first result presented in this paper is the identification of three types of cross-talks between PNs and FBA methods and their dependencies on available data. We exemplify our insights with the analysis of a pancreatic cancer model. We discuss how our reasoning framework provides a biologically and mathematically grounded decision making setting for the integration of regulatory, signalling, and metabolic networks and greatly increases model interpretability and reusability. We discuss how the parameters of PN and FBA models can be tuned and combined together so to highlight the computational effort needed to perform this task. We conclude with speculations and suggestions on this new promising research direction.
Wydawca
Rocznik
Strony
367--392
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
  • Department of Computer Science, University of Torino, Italy
autor
  • Department of Computer Science, University of Torino, Italy
  • Department of Computer Science, University of Torino, Italy
  • Institute for Biomendical Technologies, National Research Council, Segrate (Milan), Italy
  • Department of Life Sciences and Systems Biology, University of Torino, Italy
  • Department of Life Sciences and Systems Biology, University of Torino, Italy
autor
  • Computer Laboratory, University of Cambridge, GB
autor
  • Institute for Biomendical Technologies, National Research Council, Segrate (Milan), Italy
  • Department of Computer Science, University of Torino, Italy
  • Department of Computer Science, University of Torino, Italy
Bibliografia
  • [1] Milanesi L, Romano P, Castellani G, Remondini D, Lió P. Trends in modeling Biomedical Complex Systems. BMC Bioinformatics, 2009. 10(Suppl 12):I1. doi:10.1186/1471-2105-10-s12-i1.
  • [2] Stelling J. Mathematical models in microbial systems biology. Opinion in Microbiology, 2004. 7(S).
  • [3] Cazzaniga P, Damiani C, Besozzi D, Colombo R, S Nobile M, Gaglio D, Pescini D, Molinari S, Mauri G, Alberghina L, Vanoni M. Computational strategies for a system-level understanding of metabolism. Metabolites, 2014. 4(4):1034-1087. doi:10.3390/metabo4041034.
  • [4] Besozzi D. Reaction-Based Models of Biochemical Networks. In: Beckmann A, Bienvenu L, Jonoska N (eds.), Pursuit of the Universal. Springer International Publishing, Cham, 2016 pp. 24-34. ISBN-978-3-319-40189-8.
  • [5] Aittokallio T, Schwikowski B. Graph-based methods for analysing networks in cell biology. Briefings in bioinformatic, 2006. 7. doi:10.1093/bib/bbl022.
  • [6] A Fell D, Wagner A. The small world of metabolism. Nature biotechnology, 2000. 18(11):1121-2. doi:10.1038/81025.
  • [7] Heirendt L, et al. Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3.0. Nature protocols, 2018.
  • [8] Vivian Hill A. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. j. physiol., 1910. 40:4-7.
  • [9] W Covert M, H Schilling C, Palsson B. Regulation of Gene Expression in Flux Balance Models of Metabolism. Journal of Theoretical Biology, 2001. 213(1):73-88. doi:10.1006/jtbi.2001.2405.
  • [10] Covert MW, Xiao N, Chen TJ, Karr JR. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics, 2008. 24(18):2044-2050. doi:10.1093/bioinformatics/btn352.
  • [11] Karr J, C Sanghvi J, N Macklin D, Gutschow M, Jacobs J, Bolival B, Assad-Garcia N, Glass J, W Covert M. A Whole-Cell Computational Model Predicts Phenotype from Genotype. Cell, 2012. 150:389-401. doi:10.1016/j.cell.2012.05.044.
  • [12] Min Lee J, Gianchandani EP, Eddy JA, Papin JA. Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks. PLOS Computational Biology, 2008. 4(5):1-20.
  • [13] Fisher C, Plant N, Moore JB, Kierzek A. QSSPN: Dynamic Simulation of Molecular Interaction Networks Describing Gene Regulation, Signalling and Whole-Cell Metabolism in Human Cells. Bioinformatics (Oxford, England), 2013. 29. doi:10.1093/bioinformatics/btt552.
  • [14] T Gillespie D. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 1977. 81(25):2340-2361.
  • [15] Puchalka J, M Kierzek A. Bridging the Gap between Stochastic and Deterministic Regimes in the Kinetic Simulations of the Biochemical Reaction Networks. Biophysical Journal, 2004. 86(3):1357-1372. doi:10.1016/S0006-3495(04)74207-1.
  • [16] L Peterson J. Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1981. ISBN-0136619835.
  • [17] Reddy V, Mavrovouniotis M, Liebman M. Petri net representation in metabolic pathways. In: Proc. Int. Conf. Intelligent Systems for Molecular Biology. 1993 pp. 328-336.
  • [18] Hofestädt R. A Petri Net Application of Metabolic Processes. Journal of System Analysis, Modeling and Simulation, 1994. 16:113-122.
  • [19] Cordero F, Beccuti M, Fornari C, Lanzardo S, Conti L, Cavallo F, Balbo G, Calogero R. Multi-level model for the investigation of oncoantigen-driven vaccination effect. BMC Bioinformatics, 2013. 14(SUPPL6). doi:10.1186/1471-2105-14-S6-S11.
  • [20] Herajy M, Fei L, Rohr C, Heiner M. Coloured Hybrid Petri Nets: An adaptable modelling approach for multi-scale biological networks. Computational Biology and Chemistry, 2018. 76:87-100. URL https://doi.org/10.1016/j.compbiolchem.2018.05.023.
  • [21] Totis N, Follia L, Riganti C, Novelli F, Cordero F, Beccuti M. Overcoming the Lack of Kinetic Information in Biochemical Reactions Networks. SIGMETRICS Perform. Eval. Rev., 2017. 44(4):91-102. doi:10.1145/3092819.3092830.
  • [22] K Molloy M. Performance Analysis using Stochastic Petri Nets. IEEE Transaction on Computers, 1982. 31(9):913-917.
  • [23] Feller W. An Introduction to Probability Theory and Its Applications, volume 1. Wiley, 1968. ISBN-0471257087.
  • [24] T Gillespie D. A Rigorous Derivation of the Chemical Master Equation. Physica A 188, 404-425. Physica A: Statistical Mechanics and its Applications, 1992. 188:404-425.
  • [25] O Voit E. Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists. Cambridge University Press, 2000.
  • [26] Chou IC, Voit EO. Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Mathematical biosciences, 2009. 219:57-83. doi:10.1016/j.mbs.2009.03.002.
  • [27] Tangherloni A, Nobile MS, Besozzi D, Cazzaniga P. Graphics processing units in bioinformatics, computational biology and systems biology. Briefings in Bioinformatics, 2016. 18(5):870-885. doi:10.1093/bib/bbw058.
  • [28] Beccuti M, Cazzaniga P, Pennisi M, Besozzi D, Nobile M, Pernice S, Russo G, Tangherloni A, Pappalardo F. GPU accelerated analysis of treg-teff cross regulation in relapsing-remitting multiple sclerosis. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019. 11339 LNCS:626-637. doi:10.1007/978-3-030-10549-5_49.
  • [29] B Fogel D. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscataway, NJ, USA, 1995. ISBN-0-7803-1038-1.
  • [30] Dräger A, Kronfeld M, Ziller MJ, Supper J, Planatscher H, Magnus JB, Oldiges M, Kohlbacher O, Zell A. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies. BMC Systems Biology, 2009. 3(1):5. doi:10.1186/1752-0509-3-5.
  • [31] Nobile M, Cazzaniga P, Besozzi D, Colombo R, Mauri G, Pasi G. Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization. 2018. 39:70-85. URL https://doi.org/10.1016/j.swevo.2017.09.001.
  • [32] Nobile M, Tangherloni A, Rundo L, Spolaor S, Besozzi D, Mauri G. Computational Intelligence for Parameter Estimation of Biochemical Systems. In: In IEEE Congress on Evolutionary Computation (CEC). IEEE Press, 2018 pp. 1-8. doi:10.1109/CEC.2018.8477873.
  • [33] P Runarsson T, Yao X. Stochastic Ranking for Constrained Evolutionary Optimization. Trans. Evol. Comp, 2000. 4(3):284-294. doi:10.1109/4235.873238.
  • [34] G Moles C, Mendes P, R Banga J. Parameter Estimation in Biochemical Pathways: A Comparison of Global Optimization Methods. Genome Research, 2003. 13(11):2467-2474. doi:10.1101/gr.1262503.
  • [35] Mosca E, Merelli I, Alfieri R, Milanesi L. A distributed approach for parameter estimation in systems biology models. Il Nuovo Cimento, 2009. 32(2):165-168. doi:10.1393/ncc/i2009-10400-2.
  • [36] Palsson B. Systems Biology: Simulation of Dynamic Network States. Cambridge University Press, 2011. ISBN-9780511736179.
  • [37] D Maranas C, Zomorrodi AR. Optimization Methods in Metabolic Networks. Wiley, 2016. ISBN-1119028493.
  • [38] Vijayakumar S, Conway M, Lió P, Angione C. Optimization of Multi-Omic Genome-Scale Models: Methodologies, Hands-on Tutorial, and Perspectives. In: Methods in Molecular Biology, pp. 389-408. Springer New York, 2017. doi:10.1007/978-1-4939-7528-0_18.
  • [39] Vijayakumar S, Conway M, Lió P, Angione C. Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling. Briefings in Bioinformatics, 2017. doi:10.1093/bib/bbx053.
  • [40] Mahadevan R, Edwards JS, Doyle III FJ. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophysical journal, 2002. 83(3):1331-1340.
  • [41] Yang L, Ebrahim A, Lloyd CJ, Saunders MA, Palsson BO. Dynamic ME: Dynamic simulation and refinement of integrated models of metabolism and protein expression. BMC systems biology, 2019. 13(1):2.
  • [42] Moretto M, Sonego P, Dierckxsens N, Brilli M, Bianco L, Ledezma-Tejeida D, Gama-Castro S, Galardini M, Romualdi C, Laukens K, Collado-Vides J, Meysman P, Engelen K. COLOMBOS v3.0: leveraging gene expression compendia for cross-species analyses: Table 1. Nucleic Acids Research, 2015. 44(D1):D620-D623. doi:10.1093/nar/gkv1251.
  • [43] Vijayakumar S, Angione C, Conway M, Lió P. Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling. Briefings in Bioinformatics, 2017. 19(6):1218-1235. doi:10.1093/bib/bbx053.
  • [44] Angione C, Lió P. Predictive analytics of environmental adaptability in multi-omic network models. Scientific Reports, 2015. 5.
  • [45] Vijayakumar S, Conway M, Lió P, Angione C. Optimization of Multi-Omic Genome-Scale Models: Methodologies, Hands-on Tutorial, and Perspectives, pp. 389-408. Springer New York, New York, NY. ISBN 978-1-4939-7528-0, 2018.
  • [46] Silva M, M Colom J, M Campos J, Gamma C. Linear Algebraic Techniques For The Analysis Of Petri Nets. In: In: Recent Advances in Mathematical Theory of Systems, Control, Networks, and Signal Processing II. Mita Press, 1992 pp. 35-42.
  • [47] Colom J, Silva M. Convex geometry and semiflows in P/T nets. A comparative study of algorithms for computation of minimal P-semiflows. 1989 pp. 79-112. doi:10.1007/3-540-53863-1_22.
  • [48] Roy M, D Finley S. Computational Model Predicts the Effects of Targeting Cellular Metabolism in Pancreatic Cancer. Frontiers in physiology, 2017. 8:217. doi:10.3389/fphys.2017.00217.
  • [49] Amparore E, Beccuti M, Donatelli S. (Stochastic) model checking in GreatSPN. Lecture Notes in Computer Science, 2014. 8489 LNCS:354-363. doi:10.1007/978-3-319-07734-5_19.
  • [50] Son J, A Lyssiotis C, Ying H, Wang X, Hua S, Ligorio M, M Perera R, R Ferrone C, Mullarky E, Shyh-Chang N, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 2013. 496(7443):101.
  • [51] Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP. Universally Sloppy Parameter Sensitivities in Systems Biology Models. PLoS Computational Biology, 2007. 3:e189. doi:10.1371/journal.pcbi.0030189.
  • [52] Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP. Universally Sloppy Parameter Sensitivities in Systems Biology Models. PLoS Computational Biology, 2007. 3(10):e189. doi:10.1371/journal.pcbi.0030189.
  • [53] Angione C, Conway M, Lió P. Multiplex methods provide effective integration of multi-omic data in genome-scale models. BMC Bioinformatics, 2016. 17(S4). doi:10.1186/s12859-016-0912-1.
  • [54] Ajmone Marsan M, Balbo G, Conte G, Donatelli S, Franceschinis G. Modelling with Generalized Stochastic Petri Nets. J. Wiley, New York, NY, USA, 1995. ISBN-10:0471930598, 13:978-0471930594.
  • [55] Kurtz GT. Strong approximation theorems for density dependent Markov chains. Stoc. Proc. Appl., 1978. 6(3):223-240. URL https://doi.org/10.1016/0304-4149(78)90020-0.
  • [56] Beccuti M, Fornari C, Franceschinis G, Halawani S, Ba-Rukab O, R Ahmad A, Balbo G. From symmetric nets to differential equations exploiting model symmetries. Computer Journal, 2015. 58(1):23-39. URL https://doi.org/10.1093/comjnl/bxt111.
  • [57] Aster RC, Brian B, Thurber CH. Parameter estimation and inverse problems. Elsevier, New York City, NY, USA, 2018. ISBN-9780123850492.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b555c7e-3398-438c-ad73-978c29e6f2b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.