PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-Criteria Decision Making of Abrasive Water Jet Machining Process for 2024-T3 Alloy Using Hybrid Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abrasive Water Jet Machining (AWJM) is one of the most environmentally friendly non-conventional machining processes, which can be employed to cut hard and thin materials without any thermal effects. In this study, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) has been combined with the Entropy method and employed to find out the multi-criteria decision-making of process parameters. Experimental investigations have been conducted to evaluate the performance of the AWJM process in terms of surface roughness (Ra) and kerf angle (Ka). The selected process parameters are a stand-off distance (SOD), traverse speed (TS), and abrasive flow rate (AFL), whereas the AL-alloy 2024-T3 was selected as the work piece material. The image process technique has been utilized to measure the values of the Ka. The results demonstrate that the optimal solutions of the AWJM process, which give the smallest value of Ra and minimizes Ka, are 2mm, 20mm/min, and 100 g/min, for SOD, TS, and AFL respectively.
Twórcy
  • Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq
  • Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq
  • Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq
Bibliografia
  • 1. Varun R., Nanjundeswaraswamy T. A Literature Review on Parameters Influencing Abrasive Jet Machining and Abrasive Water Jet machining. Journal of Engineering Research and Application. 2019; 9, 1: 24–29.
  • 2. Bhavin P., Ripalkumar P. Post Graduate Student. A Review on Effect of Process Parameters on Abrasive Water Jet Machining. International Journal of Creative Research Thoughts. 2018; 6(2): 1059–1064.
  • 3. Gaikwad T., Salunke N., Raut G., Chandgude A., Student B. A Review on Effect & Optimization of Abrasive Water Jet Machining Process Parameters. In IJSRD-International Journal for Scientific Research & Development. 2019; 6: 569–572.
  • 4. Jankovic P., Igic T., Nikodijevic D. Process parameters effect on material removal mechanism and cut quality of abrasive water jet machining. Theoretical and Applied Mechanics. 2013: 40(2): 277–291.
  • 5. Gaikwad T., Salunke S., Raut G., Chandgude A. A Review on Effect & Optimization of Abrasive Water Jet Machining Process Parameters. International Journal for Scientific Research & Development. 2019; 6(11): 569–572.
  • 6. Satyanarayana B., Srikar G. Optimization of Abrasive Water Jet Machining Process Parameters Using Taguchi Grey Relational Analysis (TGRA). International Journal of Mechanical and Production Engineering. 2014; 2(9): 82–87.
  • 7. Vidyapati K., Partha P., Shankar C. Grey-fuzzy method-based parametric analysis of abrasive water jet machining on GFRP composites. Indian Academy of science Sadhana. 2020; 45: 1–18.
  • 8. Jayasree B., Sagar M., Dixith R., Sruthi A. Experimental Investigation and Optimisation of Process Parameters in Abrasive Water Jet Machine. Compliance Engineering Journal. 2022; 13(1): 132–136.
  • 9. Dinesh S., Rajkamal S. Investigation of kerf Characteristics in Abrasive Water Jet Machining of Inconel 600 using Response Surface Methodology. Defense Science Journal. 2020; 70(3): 313–322.
  • 10. Elattar Y., Sonbol H., Mahdy M. Evaluation of Abrasive Water Jet Machining Process Parameters on Cutting High Strength Hard Material (Armox). Proceedings of the 18th Int. AMME Conference. 2018; 223–234.
  • 11. Senthil R., Gajendran S., Lingaraj L., Kesavan R. Optimization of Process Parameters for Machining Marble using Abrasive Water Jet Machining through Multi Response Techniques. Indian Journal of Science and Technology. 2016; 9: 1–6.
  • 12. Jennifer L., Majid T., Ana V., Muhammad A. Impacts of traverse speed and material thickness in abrasive water jet contour cutting of Austenitic stainless steel AISI 304L. Applied Sciences. 2021; 11(11): 1–16.
  • 13. Ganesh S., Brijesh K. Effect of Process Parameter in Abrasive Water Jet Cutting Using Response Surface Method. International Research Journal of Engineering and Technology. 2016; 3(6): 981–985.
  • 14. Andrea D., Tudor D. Response Surface Methods Used for Optimization of Abrasive Waterjet Machining of the Stainless Steel X2 CrNiMo 17-12-2. Materials. 2021; 14: 1–16.
  • 15. Jennifer M., Ana V., Muhammad A., Majid T. Analysis and Optimization of Process Parameters in Abrasive Waterjet Contour Cutting of AISI 304L. Metals. 2021; 11: 1–25.
  • 16. Miroslav D., Valnea S., Ivan S., Marko H. Optimization of Abrasive Waterjet Machining Process Parameters. 2017; 11(4): 143–149.
  • 17. Gholamreza D., Salim F., Rosli M., Nazirah Z. A hybrid approach using entropy and TOPSIS to select key drivers for a successful and sustainable lean construction implementation. B Institute for Advanced Sustainability Studies. 2020.
  • 18. Ponugot I., Ranga, Koka N., Ravi S. Optimizing cutting parameters in hard turning of AISI 52100 steel using TOPSIS approach. Journal of Mechanical and Energy Engineering. 2019; 43(3): 227–232.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b538c54-5801-49a3-8817-4565c8bcb790
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.