PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On dynamically consistent Jacobian inverse for non-holonomic robotic systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the dynamically consistent Jacobian inverse for non-holonomic robotic system, and its application to solving the motion planning problem. The system’s kinematics are represented by a driftless control system, and defined in terms of its input-output map in accordance with the endogenous configuration space approach. The dynamically consistent Jacobian inverse (DCJI) has been introduced by means of a Riemannian metric in the endogenous configuration space, exploiting the reduced inertia matrix of the system’s dynamics. The consistency condition is formulated as the commutativity property of a diagram of maps. Singular configurations of DCJI are studied, and shown to coincide with the kinematic singularities. A parametric form of DCJI is derived, and used for solving example motion planning problems for the trident snake mobile robot. Some advantages in performance of DCJI in comparison to the Jacobian pseudoinverse are discovered.
Rocznik
Strony
555--573
Opis fizyczny
Bibliogr. 23 poz., tab., wykr., wzory
Twórcy
autor
  • Department of Cybernetics and Robotics, Wrocław University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
autor
  • Department of Cybernetics and Robotics, Wrocław University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
Bibliografia
  • [1] A. Ben-Israel and T. N. E. Greville: Generalized Inverses. Springer, 2003.
  • [2] S. Chiaverini, G. Oriolo and I. D. Walker: Kinematically Redundant Maniulators. In: Springer Handbook of Robotics, B. Siciliano, O. Khatib (Eds), Springer, 2008, 245-265.
  • [3] E. Demircan, et al.: Human Motion Reconstruction and Synthesis of Human Skills. Advances in Robot Kinematics: Motion in Man and Machine, Springer, 2010, 283-292.
  • [4] E. Demircan, et al.: Muscle force transmission to operational space accelerations during elite golf swings. Proc. IEEE Int. Conf. on Robotics and Automation, (2012), 1464-1469.
  • [5] M. Ishikawa: Trident snake robot: Locomotion analysis and control. Proc. IFAC Symp. on Nonlinear Control Systems (NOLCOS), (2004), 1169-1174.
  • [6] M. Ishikawa, Y. Minati and T. Sugie: Development and control experiment of the trident snake robot. IEEE/ASME Trans. Mechatronics, 15 (2010), 9-15.
  • [7] K. Kazerounian and Z. Wang: Global versus local optimization in redundancy resolution of robotic manipulators. Int. J. Robotics Research, 7 (1988), 3-12.
  • [8] O. Khatib: Motion/force redundancy of manipulators. 1990 Japan-USA Symp. on Flexible Automation, (1990), 337-342.
  • [9] O. Khatib: Inertial properties in robotics manipulation: An object-level framework. Int. J. Robotics Research, 14 (1995), 19-36.
  • [10] O. Khatib, et al.: Whole-body dynamic behavior and control of human-like robots. Int. J. Humanoid Robotics, 1 (2004), 29-43.
  • [11] R. Montgomery: A Tour of Subriemannian Geometries, their Geodesics and Applications. AMS, Providence, Rhode Island, 2002.
  • [12] J. Nakanishi, et al.: Operational space control: A theoretical and empirical comparison. Int. J. Robotics Research, 27 (2008), 737-757.
  • [13] J. P. Ostrowski, et al.: The mechanics of undulatory locomotion: The mixed kinematic and dynamic case. Proc. IEEE Int. Conf. on Robotics and Automation, (1995), 1-15.
  • [14] D. Paszuk, K. Tchoń and Z. Pietrowska: Motion planning of the trident snake robot equipped with passive or active wheels. Bulletin of the Polish Academy of Sciences Technical Sciences, 60 (2012), 547-554.
  • [15] Z. Pietrowska: Kinematics, dynamics, and control of a trident snake type nonholonomic system. Master’s Thesis, Wocław University of Technology, 2012 (in Polish).
  • [16] Z. Pietrowska and K. Tchoń: Dynamics and motion planning of Trident Snake Robot. J. Intelligent and Robotic Systems, 75 (2014), 17-28.
  • [17] J. Ratajczak and K. Tchoń : Dynamically consistent Jacobian inverse for mobile manipulators. Int. J. Control, 89 (2015), 1-16.
  • [18] L. Sentis, J. Park and O. Khatib: Compliant control of multicontact and center-of-mass behaviors in humanoid robots. IEEE Trans. Robotics, 26 (2010), 483-501.
  • [19] E. D. Sontag: Mathematical Control Theory. Springer-Verlag, New York, 1999.
  • [20] H. J. Sussmann: A continuation method for non-holonomic path finding problems. Proc. 32nd IEEE Control and Decision Conference, (1993), 2718-2723.
  • [21] K. Tchoń and J. Jakubiak: Endogenous configuration space approach to mobile manipulators: a derivation and performance assessment of Jacobian inverse kinematics algorithms. Int. J. Control, 76 (2003), 1387-1419.
  • [22] K. Tchoń and J. Ratajczak: Dynamically consistent Jacobian inverse for nonholonomic robotic systems. Nonlinear Dynamics, 85 (2016), 107-122.
  • [23] K. Tchoń: Endogenous Configuration Space Approach: An Intersection of Robotics and Control Theory. In: Nonlinear Systems, N. van de Wouw et al. (Eds), Springer, 2017, 209-234.
Uwagi
EN
This research was supported by the Wrocław University of Science and Technology under a statutory research project.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b538587-0d00-49d8-b14e-2d490f9bf838
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.