PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quasi Z-source direct matrix converter for enhanced resilience to power grid faults in permanent magnet synchronous motor applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a voltage control system for a PMSM motor based on the QZSDMC converter is proposed, which allows operation in both buck and boost modes as a possible method to make the drive resistant to power grid voltage sags. The authors presented a method for measuring and transforming the output voltage from QZS, enabling the use of a PI controller to control the voltage supplied to the DMC converter. The publication includes simulation and experimental studies comparing the operation of a PMSM motor powered by DMC and the proposed QZSDMC with voltage control. Simulation studies confirm the drive with QZSDMC resistance to voltage sags up to 80% of the rated value. Experimental studies demonstrate the correct operation of PMSM even with a power grid voltage amplitude equal to 40% of the rated value.
Rocznik
Strony
art. no. e150201
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Institute of Robotics and Machine Intelligence, Piotrowo 3A, 60-965 Poznan, Poland
  • Poznan University of Technology, Institute of Robotics and Machine Intelligence, Piotrowo 3A, 60-965 Poznan, Poland
Bibliografia
  • [1] D.S. Dorr, T.M. Gruzs, M.B. Hughes, R.E. Jurewicz, Gurcharn Dang, and J.L. McClaine, “Interpreting recent power quality surveys to define the electrical environment,” IAS ’96 Conference Record of the 1996 IEEE Industry Applications Conference 31st IAS Annual Meeting, S an Diego, USA, 1996, vol.4, pp. 2251–2258.
  • [2] T. Tarczewski, R. Szczepanski, K. Erwinski, X. Hu, and L.M. Grzesiak, “A Novel Sensitivity Analysis to Moment of Inertia and Load Variations for PMSM Drives,” IEEE Trans. Power Electron., vol. 37, no. 11, pp. 13299–13309, Nov. 2022, doi: 10.1109/TPEL.2022.3188404.
  • [3] M. Morawiec, A. Lewicki, and I.C. Odeh, “Rotor-Flux Vector Based Observer of Interior Permanent Synchronous Machine,” IEEE Trans. Ind. Electron., vol. 71, no. 2, pp. 1399–1409, Feb. 2024, doi: 10.1109/TIE.2023.3250851.
  • [4] P.W. Wheeler, J. Rodriguez, J.C. Clare, L. Empringham, and A. Weinstein, “Matrix converters: a technology review,” IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 276–288, Apr 2002.
  • [5] P. Szcześniak and J. Kaniewski, “Hybrid Transformer With Matrix Converter,” IEEE Trans. Power Deliv., vol. 31, no. 3, pp. 1388–1396, June 2016, doi: 10.1109/TPWRD.2015.2493508.
  • [6] K. Inomata et al., “Enhanced fault ride through capability of matrix converter for wind power system,” IECON 2013 – 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, 2013, pp. 4838–4843.
  • [7] H. Takahashi and J. Itoh, “Ride through capability of matrix converter for grid connected system under short voltage sag,” IECON 2015 – 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, 2015, pp. 005298–005303.
  • [8] K. Yamamoto, K. Ikeda, Y. Tsurusaki, and M. Ikeda, “Characteristics of voltage sag/swell compensator utilizing single-phase matrix converter,” 2013 International Conference on Electrical Machines and Systems (ICEMS), Busan, 2013, pp. 1863–1868.
  • [9] F.Z. Peng, “Z-source inverter,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 504–510, Mar/Apr. 2003.
  • [10] J.Anderson and F.Z. Peng, “Four quasi-Z-source inverters,” in Proc. IEEE Power Electron. Specialists Conf., Jun. 15–19, 2008, pp. 2743–2749.
  • [11] M. Nguyen, Y. Jung, Y. Lim, and Y. Kim, “A Single-Phase Z-Source Buck–Boost Matrix Converter,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 453–462, Feb. 2010.
  • [12] B. Ge, Q. Lei, W. Qian, and F.Z. Peng, “A Family of Z-Source Matrix Converters,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 35–46, Jan. 2012.
  • [13] S. Liu, B. Ge, X. Jiang, H. Abu-Rub, and F.Z. Peng, “Modeling, analysis, and motor drive application of quasi-Z-source indirect matrix converter,” Int. J. Comput. Math. Electr. Electron. Eng., vol. 33, no. 1/2, pp. 298–319, 2014.
  • [14] S. Liu, B. Ge, X. You, X. Jiang, H. Abu-Rub, and F.Z. Peng, “A novel quasi-Z-source indirect matrix converter,” Int. J. Circuit Theory Appl., vol. 43, no. 4, pp. 438–454, Apr. 2015.
  • [15] O. Ellabban, H. Abu-Rub, and S. Bayhan, “Z-Source Matrix Converter: An Overview,” IEEE Trans. Power Electron., vol. 31, no. 11, pp. 7436–7450, Nov. 2016.
  • [16] E. Karaman, M. Farasat, and A.M. Trzynadlowski, “A Comparative Study of Series and Cascaded Z-Source Matrix Converters,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5164–5173, Oct. 2014.
  • [17] S. Liu, B. Ge, X. Jiang, H. Abu-Rub, and F.Z. Peng, “Comparative Evaluation of Three Z-Source/Quasi-Z-Source Indirect Matrix Converters,” IEEE Trans. Ind. Electron., vol. 62, no. 2, pp. 692–701, Feb. 2015.
  • [18] K. Park and K. Lee, “A Z-source sparse matrix converter under a voltage sag condition,” 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, USA, 2010, pp. 2893–2898.
  • [19] M. Trabelsi, P. Kakosimos, and H. Komurcugil, “Mitigation of grid voltage disturbances using quasi-Z-source based dynamic voltage restorer,” 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), Doha, Qatar, 2018, pp. 1–6.
  • [20] F. Iov, D.A. Hansen, P.E. Sørensen, and N.A. Cutululis, “Mapping of Grid Faults and Grid Codes”, Roskilde: Risø National Laboratory. Denmark. Forskningscenter Risoe. Risoe-R, No. 1617(EN).
  • [21] M.B. Hughes and J.S. Chan, “Canadian National power quality survey results,” in Proc. EPRI PQA’95, New York, USA, May 9–11, 1995.
  • [22] C. Xia, J. Zhao, Y. Yan, and T. Shi, “A Novel Direct Torque Control of Matrix Converter-Fed PMSM Drives Using Duty Cycle Control for Torque Ripple Reduction,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2700–2713, June 2014.
  • [23] P. Szczesniak, K. Urbanski, Z. Fedyczak, and K. Zawirski, “Comparative study of drive systems using vector-controlled PMSM fed by a matrix converter and a conventional frequency converter,” Turk. J. Electr. Eng. Comput. Sci., vol. 24, pp. 1516–1531, 2016.
  • [24] D. Majchrzak and P. Siwek, “Comparison of FOC and DTC methods for a Matrix Converter-fed permanent magnet synchronous motor,” 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 2017, pp. 525–530.
  • [25] L. Huber and D. Borojevic, “Space vector modulated three-phase to three-phase matrix converter with input power factor correction,” IEEE Trans. Ind Appl, vol. 31, no. 6, pp. 1234–1246, Nov/Dec 1995.
  • [26] S. Liu, B. Ge, Y. Liu, H. Abu-Rub, R.S. Balog, and H. Sun, “Modeling, Analysis, and Parameters Design of LC-Filter-Integrated Quasi-Z -Source Indirect Matrix Converter,” IEEE Trans. Power Electron., vol. 31, no. 11, pp. 7544–7555, Nov. 2016.
  • [27] J. Bauer, S. Fligl, and A. Steimel, “Design and Dimensioning of Essential assive Components for the Matrix Converter Prototype,” Automatika, vol. 53, no. 3, 2012, pp. 225–235.
  • [28] O. Ellabban, H. Abu-Rub, and B. Ge, “A Quasi-Z-Source Direct Matrix Converter Feeding a Vector Controlled Induction Motor Drive,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 2, pp. 339–348, June 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b4bd456-8996-48fd-be92-585f762d4a84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.