Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The synchronisation of a complex chaotic network of permanent magnet synchronous motor systems has increasing practical importance in the field of electrical engineering. This article presents the control design method for the hybrid synchronization and parameter estimation of ring-connected complex chaotic network of permanent magnet synchronous motor systems. The design of the desired control law is a challenging task for control engineers due to parametric uncertainties and chaotic responses to some specific parameter values. Controllers are designed based on the adaptive integral sliding mode control to ensure hybrid synchronization and estimation of uncertain terms. To apply the adaptive ISMC, firstly the error system is converted to a unique system consisting of a nominal part along with the unknown terms which are computed adaptively. The stabilizing controller incorporating nominal control and compensator control is designed for the error system. The compensator controller, as well as the adopted laws, are designed to get the first derivative of the Lyapunov equation strictly negative. To give an illustration, the proposed technique is applied to 4-coupled motor systems yielding the convergence of error dynamics to zero, estimation of uncertain parameters, and hybrid synchronization of system states. The usefulness of the proposed method has also been tested through computer simulations and found to be valid.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. e137056
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
- Capital University of Science and Technology, Islamabad Expressway, Kahuta Road, Zone-V Islamabad, Pakistan
autor
- Capital University of Science and Technology, Islamabad Expressway, Kahuta Road, Zone-V Islamabad, Pakistan
Bibliografia
- [1] A.C. Fowler, J.D. Gibbon, and M.J. McGuinness, “The complex Lorenz equations”, Physica D 4, 139–163 (1982).
- [2] P. Liu, H. Song, and X. Li, “Observe-based projective synchronization of chaotic complex modified Van Der Pol-Duffing oscillator with application to secure communication”, J. Comput. Nonlinear Dyn. 10, 051015 (2015).
- [3] G.M. Mahmoud and A.A. Shaban, “On periodic solutions of parametrically excited complex non-linear dynamical systems”, Physica A 278(3‒4), 390–404 (2000).
- [4] G.M. Mahmoud and A.A. Shaban, “Periodic attractors of complex damped non-linear systems”, Int. J. Non-Linear Mech. 35(2), 309–323 (2000).
- [5] G.M. Mahmoud, “Periodic solutions of strongly non-linear Mathieu oscillators”, Int. J. Non-Linear Mech. 32(6), 1177–1185 (1997).
- [6] G.M. Mahmoud and E.Mahmoud, “Lag synchronization of hyperchaotic complex nonlinear systems”, Nonlinear Dynamics 67, 1613–1622 (2012).
- [7] P. Liu and S. Liu, “Anti-synchronization between different chaotic complex systems”, Phys. Scr. 83, 065006 (2011).
- [8] S. Liu and P. Liu, “Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters”, Nonlinear Anal.-Real World Appl. 12, 3046–3055(2011).
- [9] N. Siddique and F.U. Rehman, “Parameter Identification and Hybrid Synchronization in an Array of Coupled Chaotic Systems with Ring Connection: An Adaptive Integral Sliding Mode Approach”, Math. Probl. Eng. 2018, 6581493 (2018).
- [10] G.M. Mahmoud, E.E. Mahmoud, and A.A. Arafa, “Projective synchronization for coupled partially linear complex-variable systems with known parameters”, Math. Meth. Appl. Sci. 40(4), 1214–1222 (2017).
- [11] D.W. Qian, Y.F Xi, and S.W. Tong, “Chaos synchronization of uncertain coronary artery systems through sliding mode”, Bull. Pol. Acad. Sci. Tech. Sci. 67(3), 455–462 (2019).
- [12] G.M. Mahmoud, E.E. Mahmoud, and A.A. Arafa, “On modified time delay hyperchaotic complex Lü system”, Nonlinear Dynamics 80(1‒2), 855–869 (2015).
- [13] G.M. Mahmoud, T. Bountis, M.A. Al-Kashif, and A.A. Shaban, “Dynamical properties and synchronization of complex nonlinear equations for detuned lasers”, Dynam. Syst. 24(1), 63–79 (2009).
- [14] J.-B. Hu, H. Wei, Y.-F. Feng, and X.-B. Yang, “Synchronization of fractional chaotic complex networks with delay”, Kybernetika 55, 203–215 (2019).
- [15] N.A. Almohammadi, E.O. Alzahrani, and M.M. El-Dessoky, “Combined modified function projective synchronization of different systems through adaptive control”, Arch. Control Sci. 29, 133–146 (2019).
- [16] H. Su, Z. Rong, M.Z.Q. Chen, X. Wang, G. Chen and H. Wang, “Decentralized adaptive pinning control for cluster synchronization of complex dynamical networks”, IEEE Trans. Cybern. 43, 2182–2195 (2013).
- [17] A. Khan and U. Nigar, “Sliding mode disturbance observer control based on adaptive hybrid projective compound combination synchronization in fractional-order chaotic systems”, Int. J. Control Autom. Syst. 31, 885–899 (2020).
- [18] G.M. Mahmoud, E.A. Mansour, and T.M. Abed-Elhameed, “On fractional-order hyperchaotic complex systems and their generalized function projective combination synchronization”, Optik 130, 398–406 (2017).
- [19] S. Wang, X. Wang, X. Wang, and Y. Zhou, “Adaptive generalized combination complex synchronization of uncertain real and complex nonlinear systems”, AIP Adv. 6, 045011 (2016).
- [20] J. Zhou, A. Oteafy, and N. Smaoui, “Adaptive synchronization of an uncertain complex dynamical network”, IEEE Trans. Autom. Control 51, 652–656 (2006).
- [21] X. Chen, J. Qiu, J. Cao, and H. He, “Hybrid synchronization behavior in an array of coupled chaotic systems with ring connection”, Neurocomputing 173, 1299–1309 (2016).
- [22] F. Zhang, C. Mu, X. Wang, I. Ahmed, and Y. Shu, “Solution bounds of a new complex PMSM system”, Nonlinear Dynamics 74, 1041–1051 (2013).
- [23] Y.Wang, Y. Fan, Q.Wang, and Y. Zhang, “Stabilization and synchronization of complex dynamical networks with different dynamics of nodes via decentralized controllers”, IEEE Trans. Circuits Syst. I-Regul. Pap. 59, 1786–1795 (2012).
- [24] L. Zarour, K. Abed, M. Hacil, and A Borni, “Control and optimisation of photovoltaic water pumping system using sliding mode”, Bull. Pol. Acad. Sci. Tech. Sci. 67(3), 605–611 (2019).
- [25] N. Siddique, F.U. Rehman, M. Wasif, W. Abbasi, and Q. Khan, “Parameter Estimation and Synchronization of Vaidyanathan Hyperjerk Hyper-Chaotic System via Integral Sliding Mode Control”, 2018 AEIT Conference IEEE, 1–5 (2018).
- [26] K. Urbanski, “A new sensorless speed control structure for PMSM using reference model”, Bull. Pol. Acad. Sci. Tech. Sci. 65(4), 489–496 (2017).
- [27] X. Sun, Z. Shi, Y. Zhou, W. Zebin, S. Wang,B. Su, L. Chen, and K. Li, “Digital control system design for bearingless permanent magnet synchronous motors”, Bull. Pol. Acad. Sci. Tech. Sci. 66(5), 687–698 (2018).
- [28] T. Tarczewski, M. Skiwski, L.J. Niewiara, and L.M. Grzesiak, “High-performance PMSM servo-drive with constrained state feedback position controller”, Bull. Pol. Acad. Sci. Tech. Sci. 66(1), 49–58 (2018).
- [29] W. Xing-Yuan and Z. Hao, “Backstepping-based lag synchronization of a complex permanent magnet synchronous motor system”, Chin. Phys. B 22, 048902 (2013).
- [30] Z. Zhang, Z. Li, M.P. Kazmierkowski, J. Rodríguez, and R. Kennel, “Robust Predictive Control of Three-Level NPC Back-to-Back Power Converter PMSG Wind Turbine Systems With Revised Predictions”, IEEE Trans. Power Electron. 33(11), 9588– 9598 (2018).
- [31] N. Hoffmann, F.W. Fuchs, M.P. Kazmierkowski, and D. Schröder, “Digital current control in a rotating reference frame – Part I: System modeling and the discrete time-domain current controller with improved decoupling capabilities”, IEEE Trans. Power Electron. 31(7), 5290–5305 (2016).
- [32] H. Won, Y.-K. Hong, M. Choi, H.-s. Yoon, S. Li and T. Haskew, “Novel Efficiency-shifting Radial-Axial Hybrid Interior Permanent Magnet Sychronous Motor for Electric Vehicle”, 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, USA, 2020, pp. 47–52.
- [33] C. Jiang and S. Liu, “Synchronization and Antisynchronization of-Coupled Complex Permanent Magnet Synchronous Motor Systems with Ring Connection”, Complexity 4, 1–15 (2017).
- [34] M. Karabacak and H.I. Eskikurt, “Speed and current regulation of a permanent magnet synchronous motor via nonlinear and adaptive backstepping control”, Math. Comput. Model. 53, 2015–2030 (2011).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b4a5a1e-0c27-4fc9-809a-9c661d3cce86