PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The hydrodynamic resistance of stepped planing hulls under different geometrical and physical conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the hydrodynamic resistance of one-step planing craft has been experimentally investigated under different geometrical and physical conditions. For this to be accomplished, a Fridsma body model with different deadrise angles was considered. Moreover, the effect of the longitudinal distance of the step from the transom and the step height on the hydrodynamic resistance of a stepped planing craft has been evaluated at different hull velocities. According to the experimental results, frictional resistance can be enhanced by decreasing the height of the step. However, a greater total resistance can be obtained by increasing the longitudinal distance of the step from the transom. Moreover, it was found that the proportionality of the longitudinal distance of the step from the transom to the step height has a remarkable effect on the hydrodynamic efficiency of the step in stepped planing craft.
Rocznik
Strony
24--31
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Imam Hossein University, Department of Mechanical Engineering, Tehran, Iran
  • Amirkabir University of Technology (Tehran Polytechnic), Department of Maritime Engineering 424 Hafez Ave, P.O. Box 15875-4413, Tehran, Iran
  • Imam Hossein University, Department of Mechanical Engineering, Tehran, Iran
autor
  • Imam Hossein University, Department of Mechanical Engineering, Tehran, Iran
Bibliografia
  • 1. Brizzolara, S. & Serra, F. (2007) Accuracy of CFD codes in the prediction of planing surfaces hydrodynamic characteristics. In 2nd International Conference on Marine Research and Transportation, Ischia, Naples, Italy.
  • 2. Clement, E.P. & Blount, D.L. (1963) Resistance tests of a systematic series of planing hull forms. SNAME Transactions, pp. 491–579.
  • 3. Clement, E.P. & Koelbel, J.O. (1992) Optimized designs for stepped planing monohulls and catamarans. In Conference on Intersociety High Performance Marine Vehicles, Washington DC, USA.
  • 4. Clement, E.P. & Pope, J.D. (1961) Stepless and stepped planing hulls-graphs for performance prediction and design. International Shipbuilding Progress 8(84), pp. 344–360.
  • 5. Committee, P. (2002) Final report and recommendations to the 23rd ITTC. Proceeding of 23rd ITTC.
  • 6. Cucinotta, F., Guglielmino, E. & Sfravara, F. (2017) An experimental comparison between different artificial air cavity designs for a planing hull. Ocean Engineering 140, pp. 233–243.
  • 7. De Marco, A., Mancini, S., Miranda, S., Scognamiglio, R. & Vitiello, L. (2017) Experimental and numerical
  • hydrodynamic analysis of a stepped planing hull. Applied Ocean Research 64, pp. 135–154.
  • 8. Doctors, L.J. (1985) Hydrodynamics of high-speed small craft. The National Academies of Sciences, Engineering, and Medicine 292.
  • 9. Jiang, Y., Sun, H., Zou, J., Hu, A. & Yang, J. (2016) Analysis of tunnel hydrodynamic characteristics for planing trimaran by model tests and numerical simulations. Ocean Engineering 113, pp.101–110.
  • 10. Lee, E., Pavkov, M. & Mccue-Weil, L. (2014) The systematic variation of step configuration and displacement for a double-step planing craft. Journal of Ship Production and Design 30(2), pp. 89–97.
  • 11. Lotfi, P., Ashrafizaadeh, M. & Esfahan, R.K. (2015) Numerical investigation of a stepped planing hull in calm water. Ocean engineering 94, pp. 103–110.
  • 12. Makasyeyev, M.V. (2009) Numerical modeling of cavity flow on bottom of a stepped planing hull. International Symposium on Cavitation, Ann Arbor, Michigan, USA.
  • 13. Nourghasemi, H., Bakhtiari, M. & Ghassemi, H. (2017) Numerical study of step forward swept angle effects on the hydrodynamic performance of a planing hull. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 51 (123), pp. 35–42.
  • 14. Savitsky, D. (1964) Hydrodynamic design of planing hulls. Marine technology 1(1), pp. 71–95.
  • 15. Savitsky, D., Delorme, M.F. & Datla, R. (2007) Inclusion of whisker spray drag in performance prediction method for high-speed planing hulls. Marine Technology 44(1), pp. 35– 56.
  • 16. Savitsky, D. & Morabito, M. (2010) Surface wave contours associated with the forebody wake of stepped planing hulls. Marine Technology 47(1), pp. 1–16.
  • 17. Seo, J., Choi, H.K., Jeong, U.C., Lee, D.K., Rhee, S.H., Jung, C.M. & Yoo, J. (2016) Model tests on resistance and seakeeping performance of wave-piercing high-speed vessel with spray rails. International Journal of Naval Architecture and Ocean Engineering 8(5), pp.442–455.
  • 18. Shuford Jr, C.L. (1958) A theoretical and experimental study of planing surfaces including effects of cross section and plan form. NACA-report-1355.
  • 19. Taunton, D.J., Hudson, D.A. & Shenoi, R.A. (2010) Characteristics of a series of high speed hard chine planing hullspart I: performance in calm water. International Journal of Small Craft Technology 152, pp. 55–75.
  • 20. Taunton, D.J., Hudson, D.A. & Shenoi, R.A. (2011) Characteristics of a series of high speed hard chine planing hulls-part II: performance in waves. International Journal of Small Craft Technology 153, pp. B1–B22.
  • 21. Timmins, C.R. (2014) Yaw stability of a recreational stepped planing hull. Transactions – The Society of Naval Architects and Marine Engineers.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b490192-815f-476d-8f46-a64cf81e478f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.