PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomass and wind energy as sources of renewable energy for a more sustainable environment in Indonesia : a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pollution continues to experience a rapid increase so cities in the world have required the use of renewable energy. One of the keys that can prevent climate change with a sustainable system is renewable energy. Renewable energy production, especially for hybrid systems from biomass and wind, is the objective of the analysis in this work. The potential of feedstock for different biofuels such as bio-diesel, bio-ethanol, bio-methane, bio-hydrogen, and biomass is also discussed in this paper. The sustainability of the energy system for the long term is the main focus of work in this investigation. The configuration of the hybrid system between biomass energy and wind energy as well as some problems from various design factors are also presented. Based on the findings, this alternative energy utilization through biomass-based hybrids can save costs and improve environmental conditions, especially for the electrification of off-grid rural areas. This paper will provide important information to policymakers, academics, and investors, especially in carrying out the development and factors related to the utilization of wind-biomass-based hybrid energy systems.
Słowa kluczowe
Rocznik
Strony
57--69
Opis fizyczny
Bibliogr. 113 poz., rys., tab., wykr.
Twórcy
  • Faculty of Engineering, Universitas Serambi Mekkah, Banda Aceh 23245, Indonesia
  •  Research Center of Palm Oil and Coconut, Universitas Syiah Kuala, Indonesia
autor
  •  Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  •  Research Center of Palm Oil and Coconut, Universitas Syiah Kuala, Indonesia
  • College of Engineering, Universiti Malaysia Pahang, Pahang, Malaysia
autor
  • Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
autor
  •  Energy Centre, Maulana Azad National Institute of Technology, Bhopal, India
autor
  • Politeknik Sultan Mizan Zainal Abidin, Terengganu
autor
  • Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
Bibliografia
  • 1. Aguilar-Rivera, N., Michel-Cuello, C., Cervantes-Niño, J.J, Gómez--Merino, F.C. Olvera, & Vargas, L.A. (2021). 12 – Effects of public policies on the sustainability of the biofuels value chain. In: Ray RCBT-SB (ed) Applied Biotechnology Reviews. Academic Press, pp. 345–379
  • 2. Al-Ghussain, L., Darwish, Ahmad, A., Abubaker, A.M. & Mohamed, M.A. (2021). An integrated photovoltaic/wind/biomass and hybrid energy storage systems towards 100% renewable energy microgrids in university campuses. Sustain Energy Technol Assessments, 46:101273, DOI: 10.1016/j.seta.2021.101273
  • 3. Alagumalai, A., Mathimani, T., Pugazhendhi, A., Atabani, A.E., Brindhadevi, K. & Canh, N.D. (2020). Experimental insight into co-combustion characteristics of oxygenated biofuels in modified DICI engine. Fuel, 278:118303, DOI: 10.1016/j.fuel.2020.118303
  • 4. Amjith, L.R. & Bavanish, B. (2021a). Design and analysis of 5 MW horizontal axis wind turbine. Mater Today Proc. 37, pp. 3338–3342.
  • 5. Amjith, L.R. & Bavanish, B. (2021b). Optimization of horizontal axis wind turbine blade using FEA. Mater Today Proc. 37, pp. 3367–3371, DOI: 10.1016/j.matpr.2020.09.215
  • 6. Arias, D.M., Ortíz-Sánchez, E., Okoye, P.U., Rodríguez-Rangel, H., Ortega, A.B., Longoria, A., Domínguez-Espíndola, R. & Sebastian, P.J. (2021). A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. Sci Total Environ. 794:148636, DOI: 10.1016/j.scitotenv.2021.148636
  • 7. Arteaga-López, E. & Angeles-Camacho, C. (2021). Innovative virtual computational domain based on wind rose diagrams for micrositing small wind turbines. Energy, 220:119701, DOI: 10.1016/j.energy.2020.119701
  • 8. Arumugam, P., Ramalingam, V. & Bhaganagar, K. (2021). A pathway towards sustainable development of small capacity horizontal axis wind turbines – Identification of influencing design parameters & their role on performance analysis. Sustain Energy Technol Assessments, 44:101019, DOI: 10.1016/j.seta.2021.101019
  • 9. Bodzek, M. (2022). Nanoparticles for water disinfection by photocatalysis: A review. Arch Environ Prot. 48, pp. 3–17, DOI: 10.24425/aep.2022.140541
  • 10. Chen, H., Xia, A., Zhu, X., Huang, Y., Zhu, X. & Liao, Q. (2022). Hydrothermal hydrolysis of algal biomass for biofuels production: A review. Bioresour Technol. 344:126213, DOI: 10.1016/j.biortech.2021.126213
  • 11. Chen, J., Li, X., Jia, W., Shen, S., Deng, S., Ji, B. & Chang, J. (2021). Promotion of bioremediation performance in constructed wetland microcosms for acid mine drainage treatment by using organic substrates and supplementing domestic wastewater and plant litter broth. J Hazard Mater, 404:124125, DOI: 10.1016/j.jhazmat.2020.124125
  • 12. Chilakamarry, C.R., Mimi Sakinah, A.M., Zularisam, A.W., Pandey, A. & Dai-Viet, N. Vo. (2021). Technological perspectives for utilisation of waste glycerol for the production of biofuels: A review. Environ Technol Innov. 24:101902, DOI: 10.1016/j.eti.2021.101902
  • 13. Chmielniak, T. (2019). Wind and solar energy technologies of hydrogen production – a review of issues. Polityka Energ – Energy Policy J. 22, pp. 5–20.
  • 14. Chowdhury, H., Loganathan, B., Mustary, I., Alam, F. & Mobil, S.M.A. (2019). Chapter 12 – Algae for biofuels: The third generation of feedstock. [In:] Basile, A., Dalena, F.B.T-S. and TG, F. (eds). Elsevier, pp 323–344.
  • 15. Chudy, R., Szulecki, K., Siry, J. & Grala, R. (2021). Woody Biomass for Energy Production. Acad – Mag Polish Acad Sci. 62–65, DOI: 10.24425/academiaPAS.2021.138414
  • 16. Council GWE (2021) GWEC global wind report 2021. Glob Wind Energy Counc Brussels, Belgium.
  • 17. Das, P.V.P.C., Mathimani, T. & Pugazhendhi, A. (2021a). A comprehensive review on the factors affecting thermochemical conversion efficiency of algal biomass to energy. Sci Total Environ. 766:144213, DOI: 10.1016/j.scitotenv.2020.144213
  • 18. Das, P.V.P.C., Mathimani, T. & Pugazhendhi, A. (2021b). Recent advances in thermochemical methods for the conversion of algal biomass to energy. Sci Total Environ. 766:144608, DOI: 10.1016/j.scitotenv.2020.144608
  • 19. Deviram, G., Mathimani, T., Anto, S., Ahamed, T.S., Ananth, D.A. & Pugazhendhi, A. (2020). Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. J Clean Prod. 253:119770, DOI: 10.1016/j.jclepro.2019.119770
  • 20. Erdiwansyah, E., Mahidin, M., Husin, H., Nasaruddin, N., Khairil, K., Zaki, M. & Jamaluddin, J. (2020). Investigation of availability, demand, targets, economic growth and development of RE 2017–2050: Case study in Indonesia. International Journal of Coal Science & Technology, 8, pp. 483–499, DOI: 10.1007/s40789-020-00391-4
  • 21. Erdiwansyah, E., Gani, A. M.H.N., Mamat, R. & Sarjono, R.E. (2022). Policies and laws in the application of renewable energy Indonesia: A reviews. AIMS Energy, 10, pp. 23–44, DOI: 10.3934/energy.2022002
  • 22. Erdiwansyah, E., Mahidin, H. H., Nasaruddin, S., Zaki, M. & Muhibbddin. (2021). A critical review of the integration of renewable energy sources with various technologies. Prot Control Mod Power Syst. 6:3, DOI: 10.1186/s41601-021-00181-3
  • 23. Erdiwansyah, E., Mamat, R., Sani, M.S.M., Sudhakar, K., Kadarohman, A. & Sardjono, R.E. (2019a). An overview of Higher alcohol and biodiesel as alternative fuels in engines. Energy Reports, 5, pp.467–479, DOI: 10.1016/j.egyr.2019.04.009
  • 24. Erdiwansyah,E., Mamat, R., Sani, M.S.M. & Sudhakar, K. (2019b). Renewable energy in Southeast Asia: Policies and recommendations. Sci Total Environ., DOI: 10.1016/j.scitotenv.2019.03.273
  • 25. Ergal, İ., Fuchs, W., Hasibar, B., Thallinger, B., Bochmann, G. & Rittmann, S.K-M.R. (2018). The physiology and biotechnology of dark fermentative biohydrogen production. Biotechnol Adv. 36, pp. 2165–2186, DOI: 10.1016/j.biotechadv.2018.10.005
  • 26. Farina, A. & Anctil, A. (2022). Material consumption and environmental impact of wind turbines in the USA and globally. Resour Conserv Recycl. 176:105938, DOI: 10.1016/j.resconrec.2021.105938
  • 27. Ferreira Mota, G., Germano de Sousa, I., Luiz Barros de Oliveira, A., Cavalcante, A.L.G., Moreira, K.S., Cavalcante, F.T.T., Erick da Silva Souza, J., Rafael de Aguiar Falcão, I., Rocha, T.G., Valério, R.B.R., Cristina Freitas de Carvalho, S., Neto, F.S., Serpa, J.F., Karolinny Chaves de Lima, R., Cristiane Martins de Souza, M. & José C.S. dos Santos. (2022). Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. Algal Res. 62:102616, DOI: 10.1016/j.algal.2021.102616
  • 28. Gambelli, D., Alberti, F., Solfanelli, F., Vairo, D. & Zanoli, R. (2017). Third generation algae biofuels in Italy by 2030: A scenario analysis using Bayesian networks. Energy Policy, 103, pp. 165–178, DOI: 10.1016/j.enpol.2017.01.013
  • 29. Gaonkar, R.U. & Hegde, R.N. (2022). An investigation on the performance and viability of a hybrid twisted blade profile for a horizontal axis micro wind turbine. Mater Today Proc. 49, pp. 1200–1209, DOI: 10.1016/j.matpr.2021.06.288
  • 30. Ge, S., Manigandan, S., Mathimani, T., Basha, S., Xia, C., Brindhadevi, K., Unpaprom, Y., Whangchai, K. & Pugazhendhi, A. (2022). An assessment of agricultural waste cellulosic biofuel for improved combustion and emission characteristics. Sci Total Environ. 813:152418.
  • 31. Ge, S., Yek, P.N.Y., Cheng, Y.W., Xia, C., Mahari, W.A.W., Liew, R.K., Peng, W., Yuan, T.Q., Tabatabaei, M., Aghbashlo, M., Sonne, C. & Lam S.S. (2021). Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach. Renew Sustain Energy Rev. 135:110148, DOI: 10.1016/j.rser.2020.110148
  • 32. Ghosh, M., Ghosh, A. & Roy, A. (2020). Renewable and Sustainable Materials in Automotive Industry. [In:] Hashmi, S., Choudhury IABT-E of R and SM (eds). Elsevier, Oxford, pp. 162–179.
  • 33. Glivin, G., Edwin, M. & Sekhar, S.J. (2018). Techno‐economic studies on the influences of nonuniform feeding in the biogas plants of educational institutions. Environ Prog Sustain Energy, 37, pp. 2156–2164.
  • 34. Glivin, G., Kalaiselvan, N., Mariappan, V., Premalatha, M., Murugan, P.C. & Sekhar, J. (2021a). Conversion of biowaste to biogas: A review of current status on techno-economic challenges, policies, technologies and mitigation to environmental impacts. Fuel, 302:121153, DOI: 10.1016/j.fuel.2021.121153
  • 35. Glivin, G. & Sekhar, J. (2020a). Simulation of anaerobic digesters for the non-uniform loading of biowaste generated from an educational institution. Lat Am Appl Res Int J. 50, pp. 33–40.
  • 36. Glivin, G. & Sekhar, S.J. (2020b). Waste potential, barriers and economic benefits of implementing different models of biogas plants in a few Indian educational institutions. BioEnergy Res. 13, pp. 668–682.
  • 37. Glivin, G., Vairavan, M., Manickam, P. & Santhappan, J.S. (2021b). Techno Economic Studies on the Effective Utilization of Non-Uniform Biowaste Generation for Biogas Production. Anaerob Dig Built Environ. 81.
  • 38. Goh, Y., Yap, S.P. & Tong, T.Y. (2020). Bamboo: The Emerging Renewable Material for Sustainable Construction. [In:] Hashmi S, Choudhury IABT-E of R and SM (eds). Elsevier, Oxford, pp. 365–376.
  • 39. Guo, T., Guo, X., Gao, Z., Li, S., Zheng, X., Gao, X., Li, R., Wang, T., Li, Y. & Li, D. (2021). Nacelle and tower effect on a stand- -alone wind turbine energy output – A discussion on field measurements of a small wind turbine. Appl Energy, 303:117590, DOI: 10.1016/j.apenergy.2021.117590
  • 40. Gururani, P., Bhatnagar, P., Bisht, B., Jaiswal, K.K., Kumar, V., Kumar, S., Vlaskin, M.S., Grigorenko, A.V. & Rindin, K.G. (2022). Recent advances and viability in sustainable thermochemical conversion of sludge to bio-fuel production. Fuel, 316:123351, DOI: 10.1016/j.fuel.2022.123351
  • 41. GWEC (2021). GWEC forecasts 817 GW of wind power in 2021. https://gwec.net/gwec-forecasts-817-gw-of-wind-power-in-2021/#:~:text=The global cumulative installed wind,153.5 GW in 2017–2021.
  • 42. Heffron, R.J., Körner, M.-F., Sumarno, T., Wagner, J., Weibelzahl, M. & Fridgen, G. (2022). How different electricity pricing systems affect the energy trilemma: Assessing Indonesia’s electricity market transition. Energy Econ, 107:105663, DOI: 10.1016/j.eneco.2021.105663
  • 43. Hien, P.D. (2019) Excessive electricity intensity of Vietnam: Evidence from a comparative study of Asia-Pacific countries. Energy Policy, 130, pp. 409–417, DOI: 10.1016/j.enpol.2019.04.025
  • 44. Indonesia C (2021) RI Targets Renewable Energy to Reach 50% by 2050.
  • 45. International Energy Agency IEA, Bank W (2014) Sustainable Energy for All 2013–2014: Global Tracking Framework Report. The World Bank.
  • 46. Jurasz, J. & Mikulik, J. (2017) Economic and environmental analysis of a hybrid solar, wind and pumped storage hydroelectric energy source: a Polish perspective. Bull. Polish Acad. Sci. Tech. Sci. 65, pp. 859–869.
  • 47. Kalinichenko, A. & Havrysh, V. (2019). Feasibility study of biogas project development: technology maturity, feedstock, and utilization pathway. Arch Environ Prot. 45, pp. 68–83, DOI: 10.24425/aep.2019.126423
  • 48. Kandasamy, S., Bhuvanendran, N., Narayanan, M. & He, Z. (2022). Chapter 13 – Thermochemical conversion of algal biomass. [In:] El-Sheekh, M., Abomohra AE-FBT-H of AB (eds). Elsevier, pp. 281–302.
  • 49. Kandasamy, S., Devarayan, K., Bhuvanendran, N., Zhang, B., He, Z., Narayanan, M., Mathimani, T., Ravichandran, S. & Pugazhendhi, A. (2021). Accelerating the production of bio-oil from hydrothermal liquefaction of microalgae via recycled biochar-supported catalysts. J Environ Chem Eng. 9:105321, DOI: 10.1016/j.jece.2021.105321
  • 50. Karpagam, R., Jawaharraj, K. & Gnanam, R. (2021). Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. Sci Total Environ. 766:144236, DOI: 10.1016/j.scitotenv.2020.144236
  • 51. Kim, B., Heo, H.Y., Son, J., Yang, J., Chang, Y.K., Lee, J.H. & Lee, J.W. (2019). Simplifying biodiesel production from microalgae via wet in situ transesterification: A review in current research and future prospects. Algal Res. 41:101557, DOI: 10.1016/j.algal.2019.101557
  • 52. Klaimi, R., Alnouri, S.Y. & Stijepović, M. (2021). Design and thermoeconomic evaluation of an integrated concentrated solar power Desalination tri-generation system. Energy Convers Manag. 249:114865, DOI: 10.1016/j.enconman.2021.114865
  • 53. Kulyal, L. & Jalal, P. (2022). Bioenergy, a finer alternative for India: Scope, barriers, socio-economic benefits and identified solution. Bioresour Technol Reports, 17:100947, DOI: 10.1016/j.biteb.2022.100947
  • 54. Kumar, G., Cho, S-K., Sivagurunathan, P., Anburajan, P., Mahapatra, D.M., Park, J.H., Pugazhendhi, A. (2018) Insights into evolutionary trends in molecular biology tools in microbial screening for biohydrogen production through dark fermentation. Int J Hydrogen Energy, 43: pp. 19885–19901, DOI: 10.1016/j.ijhydene.2018.09.040
  • 55. Kumar, G., Mathimani, T., Sivaramakrishnan, R., Shanmugam, S., Bhatia, S.K., Pugazhendhi, A. (2020). Application of molecular techniques in biohydrogen production as a clean fuel. Sci Total Environ. 722:137795, DOI: 10.1016/j.scitotenv.2020.137795
  • 56. Kumar Sharma, A., Kumar Ghodke, P., Manna, S. & Chen, W.-H. (2021). Emerging technologies for sustainable production of biohydrogen production from microalgae: A state-of-the-art review of upstream and downstream processes. Bioresour Technol. 342:126057, DOI: 10.1016/j.biortech.2021.126057
  • 57. Lagdani, O., Tarfaoui, M., Nachtane, M., Trihi, M. & Laaouidi, H. (2021). Modal analysis of an iced offshore composite wind turbine blade. Wind Eng. 0309524X211011685
  • 58. Lin, C-Y. & Lu, C. (2021). Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review. Renew Sustain Energy Rev. 136:110445, DOI: 10.1016/j.rser.2020.110445
  • 59. Liu, H., Li, Y., Duan, Z. & Chen, C. (2020). A review on multi- -objective optimization framework in wind energy forecasting techniques and applications. Energy Convers Manag. 224:113324, DOI: 10.1016/j.enconman.2020.113324
  • 60. Malik, P., Awasthi, M. & Sinha, S. (2022). A techno-economic investigation of grid integrated hybrid renewable energy systems. Sustain Energy Technol Assessments, 51:101976, DOI: 10.1016/j.seta.2022.101976
  • 61. Mathimani, T. & Mallick, N. (2019). A review on the hydrothermal processing of microalgal biomass to bio-oil – Knowledge gaps and recent advances. J Clean Prod. 217, pp. 69–84, DOI: 10.1016/j.jclepro.2019.01.129
  • 62. Mathimani, T., Sekar, M., Shanmugam, S., Sabir, J.S.M., Chi, N.T.L. & Pugazhendhi, A. (2021). Relative abundance of lipid types among Chlorella sp. and Scenedesmus sp. and ameliorating homogeneous acid catalytic conditions using central composite design (CCD) for maximizing fatty acid methyl ester yield. Sci Total Environ. 771:144700, DOI: 10.1016/j.scitotenv.2020.144700
  • 63. Micallef, D. & Rezaeiha, A. (2021). Floating offshore wind turbine aerodynamics: Trends and future challenges. Renew Sustain Energy Rev. 152:111696, DOI: 10.1016/j.rser.2021.111696
  • 64. Mielcarek-Bocheńska, P. & Rzeźnik, W. (2019) Ammonia emission from livestock productionin Poland and its regional diversity in the years 2005–2017. Arch Environ Prot. 45, pp. 114–121, DOI: 10.24425/aep.2019.130247
  • 65. Mori, A. (2021) 2 Struggles for energy transition in the electricity system in Asian countries. China’s Carbon-Energy Policy Asia’s Energy Transit Carbon Leakage, Relocat Halos 23.
  • 66. Moshood, T.D., Nawanir, G. & Mahmud, F. (2021). Microalgae biofuels production: A systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ Challenges, 5:100207, DOI: 10.1016/j.envc.2021.100207
  • 67. Musharavati, F., Khanmohammadi, S. & Pakseresht, A. (2021). A novel multi-generation energy system based on geothermal energy source: Thermo-economic evaluation and optimization. Energy Convers Manag. 230:113829, DOI: 10.1016/j.enconman.2021.113829
  • 68. Narwane, V.S., Yadav, V.S., Raut, R.D., Narkhede, B.E. & Gardas, B.B. (2021). Sustainable development challenges of the biofuel industry in India based on integrated MCDM approach. Renew Energy 164, pp. 298–309, DOI: 10.1016/j.renene.2020.09.077
  • 69. Neupane, D., Kafle, S., Karki, K.R., Kim, D.H. & Pradhan, P. (2022). Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis. Renew Energy, 181, pp. 278–291, DOI: 10.1016/j.renene.2021.09.027
  • 70. Oliveira, C.Y.B., D’Alessandro, E.B., Antoniosi Filho, N.R., Lopes, R.G. & Derner, R.B. (2021). Synergistic effect of growth conditions and organic carbon sources for improving biomass production and biodiesel quality by the microalga Choricystis minor var. minor. Sci Total Environ. 759:143476, DOI: 10.1016/j.scitotenv.2020.143476
  • 71. Olsztyńska, I. (2019). Biomass in the fuel mix of the Polish energy and heating sector. Polityka Energ – Energy Policy J. 22, pp. 99–118
  • 72. Ong, E.S., Rabbani, A.H., Habashy, M.M., Abdeldayem, O.M., Al-Sakkari, E.G. & Rene, E.R. (2021). Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review. Environ Pollut. 291:118160, DOI: 10.1016/j.envpol.2021.118160
  • 73. Openshaw, K. (2010). Biomass energy: Employment generation and its contribution to poverty alleviation. Biomass and Bioenergy, 34, pp. 365–378, DOI: 10.1016/j.biombioe.2009.11.008
  • 74. Ortolani, A., Persico, G., Drofelnik, J., Jackson, A. & Campobasso, M.S. (2020). Cross-comparative analysis of loads and power of pitching floating offshore wind turbine rotors using frequency- -domain Navier-Stokes CFD and blade element momentum theory. Journal of Physics: Conference Series. IOP Publishing, p. 52016.
  • 75. Outlook IIET. (2021). Tracking Progress of Energy Transition in Indonesia. Jakarta Inst Essent Serv Reform
  • 76. Pichika, S.V.V.S.N., Yadav, R., Geetha Rajasekharan, S., Praveen, H.M. & Inturi, V. (2022). Optimal sensor placement for identifying multi-component failures in a wind turbine gearbox using integrated condition monitoring scheme. Appl Acoust. 187:108505, DOI: 10.1016/j.apacoust.2021.108505
  • 77. Pitchia Krishnan, B., Mathanbabu, M., Sathyamoorthy, G., Gokulnath, K. & Kumar, L.G.S. (2021). Performance estimation and redesign of horizontal axis wind turbine (HAWT) blade. Mater Today Proc. 46, pp. 8025–8031, DOI: 10.1016/j.matpr.2021.02.777
  • 78. Pourrajabian, A., Dehghan, M. & Rahgozar, S. (2021). Genetic algorithms for the design and optimization of horizontal axis wind turbine (HAWT) blades: A continuous approach or a binary one? Sustain Energy Technol Assessments, 44:101022, DOI: 10.1016/j.seta.2021.101022
  • 79. Reilly, L.A. (2020). Exploration of Model-Resolution Dependence of Forecasted Wind Hazards for Small Unmanned Aircraft System Operations. The University of North Dakota ProQuest Dissertations Publishing, 2020. 28085974.
  • 80. Saha, R., Bhattacharya, D. & Mukhopadhyay, M. (2022). Enhanced production of biohydrogen from lignocellulosic feedstocks using microorganisms: A comprehensive review. Energy Convers Manag. X 13:100153, DOI: 10.1016/j.ecmx.2021.100153
  • 81. Sameeroddin, M., Deshmukh, M.K.G., Viswa, G. & Sattar, M.A. (2021). Renewable energy: Fuel from biomass, production of ethanol from various sustainable sources by fermentation process. Mater Today Proc., DOI: 10.1016/j.matpr.2021.01.746
  • 82. Sangeetha, T., Rajneesh, C.P. & Yan, W-M. (2020). 15 – Integration of microbial electrolysis cells with anaerobic digestion to treat beer industry wastewater. [In:] Abbassi, R., Yadav, A.K., Khan, F. & Garaniya, VBT-IMFC for WT (eds). Butterworth-Heinemann, pp. 313–346.
  • 83. Saravanan, A.P., Pugazhendhi, A. & Mathimani, T. (2020). A comprehensive assessment of biofuel policies in the BRICS nations: Implementation, blending target and gaps. Fuel 272:117635, DOI: 10.1016/j.fuel.2020.117635
  • 84. Sellevold, E., May, T., Gangi, S., Kulakowski, J., McDonnell, I., Hill, D. & Grabowski, M. (2020). Asset tracking, condition visibility and sustainability using unmanned aerial systems in global logistics. Transp Res Interdiscip Perspect. 8:100234, DOI: 10.1016/j.trip.2020.100234
  • 85. Shakya, S. (2020). Performance analysis of wind turbine monitoring mechanism using integrated classification and optimization techniques. J Artif Intell. 2, pp. 31–41.
  • 86. Shanmugam, S., Mathimani, T., Rene, E.R., Geo, V.E., Arun, A., Brindhadevi, K. & Pugazhendhi, A. (2021a). Biohythane production from organic waste: Recent advancements, technical bottlenecks and prospects. Int J Hydrogen Energy, 46, pp. 11201–11216, DOI: 10.1016/j.ijhydene.2020.10.132
  • 87. Shanmugam, S., Sekar, M., Sivaramakrishnan, R., Raj, T., Ong, E.S., Rabbani, A.H., Rene, E.R., Mathimani, T., Brindhadevi, K. & Pugazhendhi, A. (2021b). Pretreatment of second and third generation feedstock for enhanced biohythane production: Challenges, recent trends and perspectives. Int J Hydrogen Energy, 46, pp. 11252–11268, DOI: 10.1016/j.ijhydene.2020.12.083
  • 88. Sharma, M., Singh, J., Baskar, C. & Kumar, A. (2019). A comprehensive review of renewable energy production from biomass-derived bio- -oil. Biotechnol J Biotechnol Comput Biol Bionanotechnol, 100:
  • 89. Sheng, Y., Mathimani, T., Brindhadevi, K., Basha, S., Elfasakhany, A., Xia, C. & Pugazhendhi, A. (2022). Combined effect of CO2 concentration and low-cost urea repletion/starvation in Chlorella vulgaris for ameliorating growth metrics, total and non-polar lipid accumulation and fatty acid composition. Sci Total Environ, 808:151969, DOI: 10.1016/j.scitotenv.2021.151969
  • 90. Sitarz-Palczak, E., Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers. Arch Environ Prot. 45, pp. 126–135, DOI: 10.24425/aep.2019.126427
  • 91. Solomin, E.V., Terekhin, A.A., Martyanov, A.S., Shishkov, A.N., Kovalyov, A.A., Ismagilov, D.R. & Ryavkin, G.N. (2022). Horizontal axis wind turbine yaw differential error reduction approach. Energy Convers Manag. 254:115255, DOI: 10.1016/j.enconman.2022.115255
  • 92. Srivastava, R.K., Shetti, N.P., Reddy, K.R., Kwon, E.E., Nadagouda, M.N. & Aminabhavi, T.M. (2021) Biomass utilization and production of biofuels from carbon neutral materials. Environ Pollut. 276:116731, DOI: 10.1016/j.envpol.2021.116731
  • 93. Sudhakar, M.P., Kumar, B.R., Mathimani, T. & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J Clean Prod. 228, pp. 1320–1333, DOI: 10.1016/j.jclepro.2019.04.287
  • 94. Sutherland, D.L., McCauley, J., Labeeuw, L., Ray, P., Kuzhiumparambil, U., Hall, C., Doblin, M. & Nguyen, L.N. (2021). How microalgal biotechnology can assist with the UN Sustainable Development Goals for natural resource management. Curr Res Environ Sustain. 3:100050, DOI: 10.1016/j.crsust.2021.100050
  • 95. Ta, D-T., Lin, C-Y., Ta, T-M-N. & Chu, C-Y. (2020). Biohythane production via single-stage fermentation using gel-entrapped anaerobic microorganisms: Effect of hydraulic retention time. Bioresour Technol. 317:123986, DOI: 10.1016/j.biortech.2020.123986
  • 96. Tarique, J., Sapuan, S.M., Khalina, A., Sherwani, S.F.K., Yusuf, J. & Ilyas, R.A. (2021). Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. J Mater Res Technol. 13, pp. 1191–1219, DOI: 10.1016/j.jmrt.2021.05.047
  • 97. Thanarasu, A., Periyasamy, K. & Subramanian, S. (2022). An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: Fundamentals, innovative design and scale-up deliberation. Chemosphere, 287:131886, DOI: 10.1016/j.chemosphere.2021.131886
  • 98. Thanigaivel, S., Priya, A.K., Dutta, K., Rajendran, S. & Vasseghian, Y. (2022) Engineering strategies and opportunities of next generation biofuel from microalgae: A perspective review on the potential bioenergy feedstock. Fuel, 312:122827, DOI: 10.1016/j.fuel.2021.122827
  • 99. Tuan Hoang, A. & Viet Pham, V. (2021). 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renew Sustain Energy Rev. 148:111265, DOI: 10.1016/j.rser.2021.111265
  • 100. Update AM (2017) Global wind report. Glob Wind Energy Council.
  • 101. Velusamy, K., Devanand, J., Senthil Kumar, P., Soundarajan, K., Sivasubramanian, V., Sindhu, J. & Vo, D.V.N. (2021). A review on nano-catalysts and biochar-based catalysts for biofuel production. Fuel, 306:121632, DOI: 10.1016/j.fuel.2021.121632
  • 102. Wang, L., Liu, X. & Kolios, A. (2016). State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling. Renew Sustain Energy Rev. 64, pp. 195–210, DOI: 10.1016/j.rser.2016.06.007
  • 103. Whangchai, K., Mathimani, T., Sekar, M., Shanmugam, S., Brindhadevi, K., Hung, T.V., Chinnathambi, A., Alharbi, S.A. & Pugazhendhi, A. (2021). Synergistic supplementation of organic carbon substrates for upgrading neutral lipids and fatty acids contents in microalga. J Environ Chem Eng. 9:105482, DOI: 10.1016/j.jece.2021.105482
  • 104. Wicker, R.J., Kumar, G., Khan, E. & Bhatnagar, A. (2021). Emergent green technologies for cost-effective valorization of microalgal biomass to renewable fuel products under a biorefinery scheme. Chem Eng J. 415:128932, DOI: 10.1016/j.cej.2021.128932
  • 105. Wijayasekera, S.C., Hewage, K., Siddiqui, O., Hettiaratchi, P. & Sadiq, R. (2022). Waste-to-hydrogen technologies: A critical review of techno-economic and socio-environmental sustainability. Int J Hydrogen Energy, 47, pp. 5842–5870, DOI: 10.1016/j.ijhydene.2021.11.226
  • 106. Wójcik, M. & Stachowicz, F. (2019). Influence of sewage sludge conditioning with use of biomass ash on its rheological characteristics. Arch Environ Prot. 45, pp. 92–102, DOI: 10.24425/aep.2019.126425
  • 107. Wu, L., Wei, W., Song, L., Woźniak-Karczewska, M., Chrzanowski, L. & Ni, B.J. (2021). Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas. Renew Sustain Energy Rev. 150:111448, DOI: 10.1016/j.rser.2021.111448
  • 108. Xu, L., Zhang, Q. & Shi, X. (2019). Stakeholders strategies in poverty alleviation and clean energy access: A case study of China’s PV poverty alleviation program. Energy Policy, 135:111011, DOI: 10.1016/j.enpol.2019.111011
  • 109. Yin, Z., Zhu, L., Li, S., Hu, T., Chu, R., Mo, F., Hu, D., Liu, C. & Li, Bin. (2020). A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresour Technol. 301:122804, DOI: 10.1016/j.biortech.2020.122804
  • 110. Zhang, L., Wang, J., Niu, X. & Liu, Z. (2021). Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection. Appl Energy, 301:117449, DOI: 10.1016/j.apenergy.2021.117449
  • 111. Zhao, S., Yao, L., He, H., Yiping, Z., Lei, H., Yujia, Z., Yajing, Y. & Jianli, J. (2019). Preparation and environmental toxicity of non-sintered ceramsite using coal gasification coarse slag. Arch Environ Prot. 45, pp. 84–90, DOI: 10.24425/aep.2019.127983
  • 112. Zheng, Y., Zhang, Q., Zhang, Z., Jing, Y., Hu, J., He, C. & Lu, C. (2021). A review on biological recycling in agricultural waste-based biohydrogen production: Recent developments. Bioresour Technol. 126595, DOI: 10.1016/j.biortech.2021.126595
  • 114. Zhuang, X., Liu, J., Wang, C., Zhang, Q. & Ma, L. (2022). A review on the stepwise processes of hydrothermal liquefaction (HTL): Recovery of nitrogen sources and upgrading of biocrude. Fuel, 313:122671, DOI: 10.1016/j.fuel.2021.122671
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b4619db-997c-4824-b3d2-721a958f0bd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.