PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the reaction between dolomite and nitric acid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is focused on the kinetics of the reaction between natural dolomite and diluted solutions of nitric acid at various temperatures. All experiments were carried out in a semi-batch reactor with an approximately constant nitric acid concentration using the pH-stat titration method. The reaction was studied in the temperature range from 293 to 353 K and the nitric acid concentration in the range from 0.001 to 0.200 mol dm-3. The strong effects of both temperature and nitric acid concentration were observed. The determined fractional values of the apparent reaction order (0.39 to 0.75) indicate a very complex reaction mechanism. In the studied concentration range, the values of the apparent activation energy increase from 30 to 58 kJ mol-1. Based on these data it can be assumed that the reaction takes place in the transitional regime with the stronger influence of chemical reaction. This assumption was verified by calculation of the nitric acid concentration on the surface of the dolomite grain using Sherwood criterion equation. The change in the role of the rate-controlling step was found for highly diluted solutions (< 0.010 mol dm-3 HNO3).
Słowa kluczowe
Rocznik
Strony
370--379
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Inorganic Technology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6
autor
  • Department of Inorganic Technology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6
  • Department of Inorganic Technology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6
Bibliografia
  • ABDEL-AAL E. A., 1995. Possibility of Utilizing Egyptian Dolomite Ores for Production of Magnesium Oxide by Acid Leaching. Physicochem. Probl. Miner. Process., 29, 55–65.
  • ABDEL-AAL E. A., RASHAD, M. M., 1997. Hydrometallurgical Processing Of Egyptian Magnesite Ore With Nitric Acid. Physicochem. Probl. Miner. Process., 31, 7–17.
  • ALTINER M., YILDIRIM M., YILMAZ T., 2016. Leaching of mersin/aydincik dolomite ore in hydrochloric acid. Dissolution rates. Physicochem. Probl. Miner. Process., 52 (2), 536–550.
  • BUSENBERG E., PLUMMER, L. N., 1982. The kinetics of dissolution of dolomite in CO2-H2O systems at 1.5-degrees-c to 65-degrees-c and o-atm to 1-atm pco2. American Journal of Science, 282 (1), 45-78.
  • CHOU L., GARRELS R. M., WOLLAST R., 1989. Comparative-study of the kinetics and mechanisms of dissolution of carbonate minerals. Chemical Geology, 78 (3-4), 269-282.
  • CUSSLER, E. L. (1984). Diffusion. Mass transfer in fluid systems, Cambridge University Press.
  • FEDOROCKOVA A., RASCHMAN P., 2008. Effects of pH and acid anions on the dissolution kinetics of MgO. Chem. Eng. J., 143 (1-3), 265–272.
  • GAUTELIER M., OELKERS E. H., SCHOTT J., 1999. An experimental study of dolomite dissolution rates as a function of pH from -0.5 to 5 and temperature from 25 to 80 degrees C. Chemical Geology, 157 (1-2), 13-26.
  • GUAN CH., CHEN L., ZHENG Y., SUN W., ZHENG Y., 2017. Hydrochloric acid leaching for upgrading flotation concentrate from a low-grade bauxite ore. Physicochem. Probl. Miner. Process, 53 (2), 1038–1046.
  • HERMAN J. S., WHITE W. B., 1985. Dissolution kinetics of dolomite: Effects of lithology and fluid flow velocity. Geochim. Cosmochim. Acta, 49 (10), 2017–2026.
  • JÄGER, L., HEGNER, P., 1987. Kvalita tuhých průmyslových hnojiv (in Czech), 1st ed.; SNTL Praha.
  • KÖSE T. E., 2012. Dissolution Of Magnesium From Natural Magnesite Ore By Nitric Acid Leaching. Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University, 25 (2), 43–55.
  • LAIRD D. H., HANSON W. K., 1994 Magnesium separation from dolomitic phosphate by sulfuric acid leaching. US Patent 5362460, Nov 08.
  • LANDOLT H., BÖRNSTEIN R., 1969. Zahlwerte und Funktionen aus Physik, Chemie,Astronomie, Geophysik und Technik - Transportphänomene I (Viskozität und Diffusion). Springer, Berlin.
  • LEVENSPIEL O., 1962. Chemical Reaction Engineering: An Introduction to the Design of Chemical Reactors. John Wiley & Sons, Inc.: New York.
  • LUND K., FOGLER H. S., MCCUNE C. C., 1973. Acidization .1. Dissolution of dolomite in hydrochloric-acid. Chem. Eng. Sci., 28 (3), 691-700.
  • ORTON R., UNWIN P. R., 1993. Dolomite dissolution kinetics at low pH: A channel-flow study. J.Chem.Soc. Faraday Trans., 89 (21), 3947-3954.
  • ÖZBEK, H.; ABALI, Y.; COLAK, S.; CEYHUN, I.; KARAGÖLGE, Z., 1999. Dissolution kinetics of magnesite mineral in water saturated by chlorine gas. Hydrometallurgy, 51, 173–185.
  • PERRI G., TUBIELLO G., 1963. Process for enriching of phosphoric anhydride phosphate minerals containing calcium carbonate. US Patent 3113838, Dec 10.
  • PERRY R. H., GREEN D. W. , 1998. Perry´s Chemical Engeneer´s Handbook, 7th ed. McGraw-Hill.
  • POKROVSKY O. S., GOLUBEV S. V., SCHOTT J., 2005. Dissolution kinetics of calcite, dolomite and magnesite at 25 °C and 0 to 50 atm pCO2. Chemical geology, 217 (3-4), 239-255.
  • RASCHMAN P., FEDOROCKOVA A., 2006. Dissolution of periclase in excess of hydrochloric acid: Study of inhibiting effect of acid concentration on the dissolution rate. Chemical Engineering Journal, 117 (3), 205–211.
  • RASCHMAN P., FEDOROCKOVA A., 2008. Dissolution kinetics of periclase in dilute hydrochloric acid. Chem. Eng. Sci., 63 (3), 576–586.
  • RUBTSOV, Y. I., KAZAKOV, A. I., RUSTAMBEKOV, M. K., STARSHINOV, M. S., 2005. Kinetic Aspects and Heats of Reaction between Components in Thermal Decomposition of Ammonium Nitrate-Calcium (Magnesium) Carbonate Mixtures. Russian Journal of Applied Chemistry, 78 (11), 1795–1800.
  • TAYLOR K.C., AL-GHAMDI A.H., NASR-EL-DIN H.A., 2004. Measurement of Acid Reaction Rates of a Deep Dolomitic Gas Reservoir. J. of CanadianPetroleum Technology, 43 (10), 49-56.
  • VIDENSKY J., GLASER V., 1987. Description of the Reaction of a Contracting Nonporous Particle with a Fluid. Scientific Papers of the Prague Institute of Chemical Technology, B 32; 129–151.
  • VYBORNY J., MADRON F., 1989. Kinetics of dolomite dissolution in nitric acid. Chemický průmysl (in Czech), 39 (12), 650 - 653.
  • YILDIRIM M., 2008. Dissolution Kinetics of Icel-Aydincik Dolomite in Hydrochloric Acid. S. Afr. J. Chem., 61, 127–132.
  • YILDIRIM M., AKARSU H., 2010. Preparation of magnesium oxide (MgO) from dolomite by leach-precipitation-pyrohydrolysis process. Physicochem. Probl. Miner. Process., 44, 257–272.
  • ZHANG R., HU S., ZHANG X., 2007. Dissolution Kinetics of Dolomite in Water at Elevated Temperatures. Aquat Geochem, 13 (4), 309–338.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b41c40b-9d16-4745-91b2-33aee8f9cdda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.