PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Factors Influencing Cavitation Erosion of NiCrSiB Hardfacings Deposited by Oxy-Acetylene Powder Welding on Grey Cast Iron

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents the results of a study on cavitation erosion (CE) resistance of two NiCrSiB self-fluxing powders deposited by oxy-acetylene powder welding on cast iron substrate grade EN-GJL-200. The mean hardness of deposits A-NiCrSiB, C-NiCrSiB is equal to 908 HV, 399 HV and exceeds those of EN-GJL-200 and X5CrNi18-10 reference specimens 197 HV and 209 HV, respectively. To study CE, the vibratory apparatus has been used and tests were conducted according to the ASTM G32 standard. Cavitation eroded surfaces were examined using a profilometer, optical and scanning electron microscopy. The research indicated that the CE resistance, expressed by the cumulative mass loss decreased in the following order C-NiCrSiB > A-NiCrSiB > X5CrNi18-10 > EN-GJL-200. Therefore, hardfacings were characterised by lower cumulative mass loss, in turn, higher CE resistance than the reference sample and therefore they may be applied as layers to increase resistance to cavitation of cast iron machine components. Results indicate that in the case of multiphase materials, hardness cannot be the main indicator for CE damage prediction while it strongly depends on the initial material microstructure. To qualitatively estimate the cavitation erosion damage (CEd) of NiCrSiB self-fluxing alloys at a specific test time, the following factors should be considered: material microstructure, physical and mechanical properties as well as surface morphology and material loss both estimated at specific exposure time. A general formula for the CEd prediction of NiCrSiB deposits was proposed.
Twórcy
  • Department of Materials Engineering, Mechanical Engineering Faculty, Lublin University of Technology, Poland
  • Department of Materials Engineering, Mechanical Engineering Faculty, Lublin University of Technology, Poland
  • Department of Materials Engineering, Mechanical Engineering Faculty, Lublin University of Technology, Poland
Bibliografia
  • 1. Cruz J.R. da, Henke S.L., d’Oliveira A.S.C.M. Effect of Cold Work on Cavitation Resistance of an Austenitic Stainless Steel Coating. Materials Research. 2016; 19: 1033–1041. https://doi.org/10.1590/1980-5373-MR-2015-0442.
  • 2. Nedeloni M.D., Birtărescu E., Nedeloni L., Ene T., Băra A., Clavac B. Cavitation Erosion and Dry Sliding Wear Research on X5CrNi18-10 Austenitic Stainless Steel. IOP Conf Ser: Mater Sci Eng. 2018; 416: 012028. https://doi.org/10.1088/1757-899X/416/1/012028.
  • 3. Szala M., Hejwowski T., Lenart I. Cavitation erosion resistance of Ni-Co based coatings. Adv Sci Technol Res J. 2014; 8: 36–42. https://doi.org/10.12913/22998624.1091876.
  • 4. Szala M., Łatka L., Awtoniuk M., Winnicki M., Michalak M. Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3-13 wt% TiO2 Coatings. Processes. 2020; 8: 1544. https://doi.org/10.3390/pr8121544.
  • 5. Singh J., Kumar S., Mohapatra S.K. An erosion and corrosion study on thermally sprayed WC-Co-Cr powder synergized with Mo2C/Y2O3/ZrO2 feedstock powders. Wear. 2019; 438–439. https://doi.org/10.1016/j.wear.2019.01.082.
  • 6. Amarendra H.J., Chaudhari G.P., Nath S.K. Synergy of cavitation and slurry erosion in the slurry pot tester. Wear. 2012; 290–291: 25–31. https://doi.org/10.1016/j.wear.2012.05.025.
  • 7. Hejwowski T., Szala M. Wear-Fatigue Study of Carbon Steels. Adv Sci Technol Res J. 2021; 15: 179–190. https://doi.org/10.12913/22998624/140200.
  • 8. Okada T., Iwai Y., Yamamoto A. A study of cavitation erosion of cast iron. Wear. 1983; 84: 297–312. https://doi.org/10.1016/0043-1648(83)90271-5.
  • 9. Hattori S., Kitagawa T. Analysis of cavitation erosion resistance of cast iron and nonferrous metals based on database and comparison with carbon steel data. Wear. 2010; 269: 443–448. https://doi.org/10.1016/j.wear.2010.04.031.
  • 10. Steller K. O mechanizmie niszczenia materiałów podczas kawitacji - On the mechanism of damage of materials during cavitation. Gdańsk, Poland: Institute of Fluid-Flow Machinery Polish Academy of Sciences; 1983.
  • 11. Szala M., Chocyk D., Skic A., Kamiński M., Macek W., Turek M. Effect of Nitrogen Ion Implantation on the Cavitation Erosion Resistance and Cobalt-Based Solid Solution Phase Transformations of HIPed Stellite 6. Materials. 2021; 14: 2324. https://doi.org/10.3390/ma14092324.
  • 12. Roa C.V., Valdes J.A., Larrahondo F., Rodríguez S.A., Coronado J.J. Comparison of the Resistance to Cavitation Erosion and Slurry Erosion of Four Kinds of Surface Modification on 13-4 Ca6NM Hydro-Machinery Steel. J of Materi Eng and Perform. 2021; 30: 7195–7212. https://doi.org/10.1007/s11665-021-05908-9.
  • 13. Stachowiak G., Batchelor A.W. Engineering Tribology. 4 edition. Butterworth-Heinemann; 2016.
  • 14. Volkov-Husović T., Ivanić I., Kožuh S., Stevanović S., Vlahović M., Martinović S., et al. Microstructural and Cavitation Erosion Behavior of the Cu-AlNi Shape Memory Alloy. Metals. 2021; 11: 997. https://doi.org/10.3390/met11070997.
  • 15. Riemschneider E., Bordeasu I., Mitelea I., Utu I.D. Analysis of Cavitation Erosion Resistance of Grey Cast Iron EN-GJL-200 by the Surface Induction Hardening. IOP Conf Ser: Mater Sci Eng. 2018; 416: 012005. https://doi.org/10.1088/1757-899X/416/1/012005.
  • 16. Łatka L., Michalak M., Szala M., Walczak M., Sokołowski P., Ambroziak A. Influence of 13 wt% TiO2 content in alumina-titania powders on microstructure, sliding wear and cavitation erosion resistance of APS sprayed coatings. Surface and Coatings Technology. 2021; 410: 126979. https://doi.org/10.1016/j.surfcoat.2021.126979.
  • 17. Czupryński A. Flame Spraying of Aluminum Coatings Reinforced with Particles of Carbonaceous Materials as an Alternative for Laser Cladding Technologies. Materials. 2019; 12: 3467. https://doi.org/10.3390/ma12213467.
  • 18. Gucwa M., Winczek J., Wieczorek P., Mičian M., Koňár R. The Analysis of Filler Material Effect on Properties of Excavator Crawler Track Shoe after Welding Regeneration. Archives of Metallurgy and Materials. 2021; 66: 31–36. https://doi.org/10.24425/amm.2021.134755.
  • 19. Łatka L., Biskup P. Development in PTA Surface Modifications – A Review. Advances in Materials Science. 2020; 20: 39–53. https://doi.org/10.2478/adms-2020-0009.
  • 20. Tomków J., Świerczyńska A., Landowski M., Wolski A., Rogalski G. Bead-on-Plate Underwater Wet Welding on S700MC Steel. Adv Sci Technol Res J. 2021; 15: 288–296. https://doi.org/10.12913/22998624/140223.
  • 21. Tomków J., Janeczek A. Underwater In Situ Local Heat Treatment by Additional Stitches for Improving the Weldability of Steel. Applied Sciences. 2020; 10: 1823. https://doi.org/10.3390/app10051823.
  • 22. Janicki D. The friction and wear behaviour of insitu titanium carbide reinforced composite layers manufactured on ductile cast iron by laser surface alloying. Surface and Coatings Technology 2021; 406: 126634. https://doi.org/10.1016/j.surfcoat.2020.126634.
  • 23. Munoz-Escalona P., Mridha S., Baker T.N. Advances in Surface Engineering Using TIG Processing to Incorporate Ceramic Particulates into Low Alloy and Microalloyed Steels – A Review. Adv Sci Technol Res J. 2021; 15: 88–98. https://doi.org/10.12913/22998624/138467.
  • 24. Szala M., Świetlicki A., Sofińska-Chmiel W. Cavitation erosion of electrostatic spray polyester coatings with different surface finish. Bulletin of the Polish Academy of Sciences Technical Sciences 2021; 69: e137519. https://doi.org/10.24425/bpasts.2021.137519.
  • 25. Hibi M., Inaba K., Takahashi K., Kishimoto K., Hayabusa K. Effect of Tensile Stress on Cavitation Erosion and Damage of Polymer. J Phys: Conf Ser. 2015; 656: 012049. https://doi.org/10.1088/1742-6596/656/1/012049.
  • 26. Zhou Y., Zhang J., Xing Z., Wang H., Lv Z. Microstructure and properties of NiCrBSi coating by plasma cladding on gray cast iron. Surface and Coatings Technology. 2019; 361: 270–279. https://doi.org/10.1016/j.surfcoat.2018.12.055.
  • 27. Mendez P.F., Barnes N., Bell K., Borle S.D., Gajapathi S.S., Guest S.D., et al. Welding processes for wear resistant overlays. Journal of Manufacturing Processes. 2014; 16: 4–25. https://doi.org/10.1016/j.jmapro.2013.06.011.
  • 28. Jiménez H., Olaya J.J., Alfonso J.E. Tribological Behavior of Ni-Based WC-Co Coatings Deposited via Spray and Fuse Technique Varying the Oxygen Flow. Advances in Tribology. 2021; 2021: e8898349. https://doi.org/10.1155/2021/8898349.
  • 29. Olejnik E., Szymański Ł., Batóg P., Tokarski T., Kurtyka P. TiC-FeCr local composite reinforcements obtained in situ in steel casting. Journal of Materials Processing Technology. 2020; 275: 116157. https://doi.org/10.1016/j.jmatprotec.2019.03.017.
  • 30. Mikuš R., Kováč I., Žarnovský J. Effect of Microstructure on Properties of NiCrBSi Alloys Applied by Flame-Powder Deposition. Advanced Materials Research. 2014; 1059: 1–9. https://doi.org/10.4028/www.scientific.net/AMR.1059.1.
  • 31. Wang W., Li W., Xu H. Microstructures and Properties of Plasma Sprayed Ni Based Coatings Reinforced by TiN/C1-xNxTi Generated from In-Situ Solid-Gas Reaction. Materials. 2017; 10: 785. https://doi.org/10.3390/ma10070785.
  • 32. Li W., Li J., Xu Y. Optimization of Corrosion Wear Resistance of the NiCrBSi Laser-Clad Coatings Fabricated on Ti6Al4V. Coatings. 2021; 11: 960. https://doi.org/10.3390/coatings11080960.
  • 33. Kazamer N., Muntean R., Vălean P.C., Pascal D.T., Mărginean G., Șerban V.-A. Comparison of Ni-Based Self-Fluxing Remelted Coatings for Wear and Corrosion Applications. Materials. 2021; 14: 3293. https://doi.org/10.3390/ma14123293.
  • 34. González R., Cadenas M., Fernández R., Cortizo J.L., Rodríguez E. Wear behaviour of flamesprayed NiCrBSi coating remelted by flame or by laser. Wear. 2007; 262: 301–307. https://doi.org/10.1016/j.wear.2006.05.009.
  • 35. Miguel J.M., Guilemany J.M., Vizcaino S. Tribological study of NiCrBSi coating obtained by different processes. Tribology International. 2003; 36: 181–187. https://doi.org/10.1016/S0301-679X(02)00144-5.
  • 36. Kekes D., Psyllaki P., Vardavoulias M., Vekinis G. Wear micro-mechanisms of composite WC-Co/Cr-NiCrFeBSiC coatings. Part II: Cavitation erosion. Tribology in Industry. 2014; 36: 375–383.
  • 37. Zeng C., Tian W., Liao W.H., Hua L. Microstructure and porosity evaluation in laser-cladding deposited Ni-based coatings. Surface and Coatings Technology. 2016; 294: 122–130. https://doi.org/10.1016/j.surfcoat.2016.03.083.
  • 38. Powder Welding. Surface Coating. Höganäs n.d. https://www.hoganas.com/en/powder-technologies/surface-coating/powder-welding/ (accessed October 14, 2021).
  • 39. Nickel and Fe self-fluxing alloys for coatings n.d. http://www.polema-rus.com/eng-page/nickel-selffluxing-alloys-for-coatings.html (accessed October 4, 2021).
  • 40. García A., Fernández M.R., Cuetos J.M., González R., Ortiz A., Cadenas M. Study of the Sliding Wear and Friction Behavior of WC + NiCrBSi Laser Cladding Coatings as a Function of Actual Concentration of WC Reinforcement Particles in Ball-on-Disk Test. Tribol Lett. 2016; 63:41. https://doi.org/10.1007/s11249-016-0734-3.
  • 41. Dilawary S.A.A., Motallebzadeh A., Atar E., Cimenoglu H. Influence of Mo on the high temperature wear performance of NiCrBSi hardfacings. Tribology International. 2018; 127: 288–295. https://doi.org/10.1016/j.triboint.2018.06.022.
  • 42. Cremer Beschichtungstechnologie GmbH, NiCrB-Si n.d. https://cremer-coating.com/metal-spraying/nicrbsi.html (accessed October 20, 2021).
  • 43. Wang Y., Stella J., Darut G., Poirier T., Liao H., Planche M.-P. APS prepared NiCrBSi-YSZ composite coatings for protection against cavitation erosion. Journal of Alloys and Compounds. 2017; 699: 1095–1103. https://doi.org/10.1016/j.jallcom.2017.01.034.
  • 44. Wu S.K., Lin H.C., Yeh C.H. A comparison of the cavitation erosion resistance of TiNi alloys, SUS304 stainless steel and Ni-based self-fluxing alloy. Wear. 2000; 244: 85–93. https://doi.org/10.1016/S0043-1648(00)00443-9.
  • 45. Szala M., Hejwowski T. Cavitation erosion resistance of coating flame deposited with nickel base powder. Przegląd spawalnictwa - Welding Technology Review. 2015; 87: 36–41.
  • 46. ASTM G32-10: Standard Test Method for Cavitation Erosion Using Vibratory Apparatus. PA, USA: ASTM International: West Conshohocken, Philadelphia; 2010.
  • 47. Hardfacing Powders. Kennametal Inc. Kennametal Inc 2019. https://www.stellite.com/us/en/products/hardfacing-alloys/hardfacing-powders.html (accessed October 20, 2021).
  • 48. Bergant Z., Grum J. Quality Improvement of Flame Sprayed, Heat Treated, and Remelted NiCrBSi Coatings. J Therm Spray Tech. 2009; 18: 380–391. https://doi.org/10.1007/s11666-009-9304-7.
  • 49. Sawa M., Szala M., Henzler W. Innovative device for tensile strength testing of welded joints: 3d modelling, FEM simulation and experimental validation of test rig – a case study. Applied Computer Science. 2021; 17: 92–105. https://doi.org/10.23743/acs-2021-24.
  • 50. Szala M., Szafran M., Macek W., Marchenko S., Hejwowski T. Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives. Adv Sci Technol Res J. 2019; 13: 151–161. https://doi.org/10.12913/22998624/113244.
  • 51. Szala M. Application of computer image analysis software for determining incubation period of cavitation erosion – preliminary results. ITM Web Conf 2017;15:06003. https://doi.org/10.1051/itmconf/20171506003.
  • 52. Chmiel J., Jasionowski R., Zasada D. Cavitation erosion and corrosion of pearlitic gray cast iron in non-standardized cavitation conditions. Solid State Phenomena. 2015; 225: 19–24. https://doi.org/10.4028/www.scientific.net/SSP.225.19.
  • 53. Kim B.-H., Kim B.-H., Koo Y.-H., Seo J.-H. A Study on the Cavitation Corrosion of Gray Cast Iron Liner by Antifreeze. Journal of the Korean Society of Manufacturing Process Engineers. 2017; 16: 76–82. https://doi.org/10.14775/ksmpe.2017.16.4.076.
  • 54. Tzanakis I., Bolzoni L., Eskin D.G., Hadfield M. Evaluation of Cavitation Erosion Behavior of Commercial Steel Grades Used in the Design of Fluid Machinery. Metall Mater Trans A. 2017; 48: 2193–2206. https://doi.org/10.1007/s11661-017-4004-2.
  • 55. Szala M., Łatka L., Walczak M., Winnicki M. Comparative Study on the Cavitation Erosion and Sliding Wear of Cold-Sprayed Al/Al2O3 and Cu/Al2O3 Coatings, and Stainless Steel, Aluminium Alloy, Copper and Brass. Metals. 2020; 10: 856. https://doi.org/10.3390/met10070856.
  • 56. Li Z.X., Zhang L.M., Ma A.L., Hu J.X., Zhang S., Daniel E.F., et al. Comparative study on the cavitation erosion behavior of two different rolling surfaces on 304 stainless steel. Tribology International 2021; 159: 106994. https://doi.org/10.1016/j. triboint.2021.106994.
  • 57. Podulka P. Improved Procedures for Feature-Based Suppression of Surface Texture High-Frequency Measurement Errors in the Wear Analysis of Cylinder Liner Topographies. Metals. 2021; 11: 143. https://doi.org/10.3390/met11010143.
  • 58. Zagórski I., Kulisz M., Kłonica M., Matuszak J. Trochoidal Milling and Neural Networks Simulation of Magnesium Alloys. Materials. 2019; 12: 2070. https://doi.org/10.3390/ma12132070.
  • 59. Macek W., Branco R., Trembacz J., Costa J.D., Ferreira J.A.M., Capela C. Effect of multiaxial bending-torsion loading on fracture surface parameters in high-strength steels processed by conventional and additive manufacturing. Engineering Failure Analysis. 2020; 118: 104784. https://doi.org/10.1016/j.engfailanal.2020.104784.
  • 60. Łatka L., Szala M., Michalak M., Pałka T. Impact of atmospheric plasma spray parameters on cavitation erosion resistance of Al2O3-13%TiO2 coatings. Acta Phys Pol A. 2019; 136: 342–347. https://doi.org/10.12693/APhysPolA.136.342.
  • 61. Zakrzewska D.E., Krella A.K. Cavitation Erosion Resistance Influence of Material Properties. Advances in Materials Science. 2019; 19: 18–34. https://doi.org/10.2478/adms-2019-0019.
  • 62. Hattori S., Ishikura R. Revision of cavitation erosion database and analysis of stainless steel data. Wear 2010; 268: 109–116. https://doi.org/10.1016/j.wear.2009.07.005.
  • 63. Krella A.K. The new parameter to assess cavitation erosion resistance of hard PVD coatings. Engineering Failure Analysis. 2011; 18: 855–867. https://doi.org/10.1016/j.engfailanal.2010.10.002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b3fa2ce-1ce5-4e80-8367-c7adb8e21f3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.