Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In backfill mining, surrounding rock damaged by impact loading (e.g. blasting) is immersed in backfill water after backfilling, and the instability of the impact-damaged and water-soaked (IDWS) surrounding rock can occur under blasting loads. To study the dynamic mechanical properties and the size effect of rock under such working conditions, triaxial dynamic compression tests were conducted on four groups (four length-to-diameter ratios) of first impact-damaged and then water-soaked sandstone specimens using an improved split Hopkinson pressure bar device. The test results show that, at a similar strain rate (approximately 10 s −1 ), the peak strength and elastic modulus of IDWS specimens are lower than those of the intact specimens, whereas the peak strain is higher than that of the intact specimens. Both the peak strength and peak strain of the IDWS specimens increase with strain rate, exhibiting a strong strain rate dependency. The peak strength, peak strain, and elastic modulus all display a size effect. This size effect varies over different strain rate ranges. When the strain rate is approximately 10 s −1 , the peak strength decreases as the length-to-diameter ratio increases. In contrast, at a strain rate of approximately 30 s −1 , the peak strength increases with an increase in the length-to-diameter ratio. There is a linear relationship between the incident energy and absorbed energy of the intact and IDWS specimens. Under the same incident energy, the IDWS specimens show higher absorbed energy than the intact specimens. This relationship is independent of the length-to-diameter ratio of rock specimens.
Czasopismo
Rocznik
Tom
Strony
art. no. e21, 2024
Opis fizyczny
Bibliogr. 68 poz., rys., wykr.
Twórcy
autor
- School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
autor
- School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
autor
- School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
autor
- School of Resources and Environment Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
autor
- School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
Bibliografia
- 1. Guo LJ, Liu GS, Ma QS, Chen XZ. Research progress on mining with backfill technology of underground metalliferous mine. JChina Coal Soc. 2022;2022:1–22. https://doi.org/10.13225/j.cnki.jccs.2022.0720.
- 2. Xue GL, Yilmaz E, Wang YD. Progress and prospects of mining with backfill in metal mines in China. Int J Miner Metall Mater.2023;30(8):1455–73. https://doi.org/10.1007/s12613-023-2663-0.
- 3. Li F, Gao MZ, Ye SQ, Xie J, Deng HC, Yang BG, Liu JJ, YangZD, Tang RF. Formation mechanism of core discing during drilling under deep in-situ stress environment: Numerical simulation and laboratory testing. J Cent South Univ. 2023;30(10):3303–3321. https://doi.org/10.1007/s11771-023-5465-7.
- 4. Li HR, Qiao YF, He MC, Shen RX, Gu ZJ, Cheng T, Xiao YM, Tang J. Effect of water saturation on dynamic behavior of sand-stone after wetting-drying cycles. Eng Geol. 2023;319:107105.https://doi.org/10.1016/j.enggeo.2023.107105.
- 5. Luo S, Gong FQ, Peng K, Liu ZX. Influence of water on rockburst proneness of sandstone: Insights from relative and absolute energy storage. Eng Geol. 2023;323:107172. https://doi.org/10.1016/j.enggeo.2023.107172.
- 6. Gao MZ, Li F, Qiu ZQ, Ye SQ, Xie J, Yang BG. Mechanical behaviors of segments in small curvature radius intervals of shield tunnels: from field monitoring to laboratory testing. Rock MechRock Eng. 2023. https://doi.org/10.1007/s00603-023-03488-9.
- 7. Li M, Mao XB, Cao LL, Pu H, Mao RR, Lu AH. Effects of thermal treatment on the dynamic mechanical properties of coal measures sandstone. Rock Mech Rock Eng. 2016;49(9):3525–39.https://doi.org/10.1007/s00603-016-0981-5.
- 8. Huang S, Xia KW. Effect of heat-treatment on the dynamic compressive strength of Longyou sandstone. Eng Geol. 2015;191:1–7.https://doi.org/10.1016/j.enggeo.2015.03.007.
- 9. Yin TB, Li XB, Xia KW, Huang S. Effect of thermal treatment on the dynamic fracture toughness of laurentian granite. RockMech Rock Eng. 2012;45(6):1087–94. https://doi.org/10.1007/s00603-012-0240-3.
- 10. Zhou ZL, Cai X, Chen L, Cao WZ, Zhao Y, Xiong C. Influence of cyclic wetting and drying on physical and dynamic compressive properties of sandstone. Eng Geol. 2017;220:1–12. https://doi.org/10.1016/j.enggeo.2017.01.017.
- 11. Zhou ZL, Cai X, Ma D, Chen L, Wang SF, Tan LH. Dynamic tensile properties of sandstone subjected to wetting and drying cycles. Constr Build Mater. 2018;182(SEP.10):215–32. https://doi.org/10.1016/j.conbuildmat.2018.06.056.
- 12. Hua W, Dong SM, Li YF, Wang QY. Effect of cyclic wetting and drying on the pure mode II fracture toughness of sandstone. EngFract Mech. 2016;153:143–50. https://doi.org/10.1016/j.engfracmech.2015.11.020.
- 13. Zhang J, Deng HW, Deng JR, Ke B. Development of energy-based brittleness index for sandstone subjected to freeze-thaw cycles and impact loads. Ieee Access. 2018;6:48522–30. https://doi.org/10.1109/Access.2018.2867349.
- 14. Chen YJ, Yin TB, Li XB, Li Q, Yang Z, Li MJ, Wu Y. Experimental investigation on dynamic mechanical behavior and fracture evolution of fissure-filled red sandstone after thermal treatment. Eng Geol. 2021;295:106433. https:// doi. org/ 10. 1016/j.enggeo.2021.106433.
- 15. Meng FD, Zhai Y, Li YB, Xie QY, Gao H, Li Y, Dong Q. Research on deterioration mechanism and dynamic triaxial compression characteristics of freeze–thaw sandstone. RockMech Rock Eng. 2023;56(3):2333–55. https://doi.org/10.1007/s00603-022-03172-4.
- 16. Han TL, Shi JP, Cao XS. Fracturing and damage to sandstone under coupling effects of chemical corrosion and freeze-thawcycles. Rock Mech Rock Eng. 2016;49(11):4245–55. https://doi.org/10.1007/s00603-016-1028-7.
- 17. Han TL, Shi JP, Chen YS, Cao XS. Salt solution attack-induced freeze-thaw mechanical degradation and its correlation with strength characteristic of mode-i fracture sandstone. Int JGeomech. 2020;20(5):04020039. https://doi.org/10.1061/(Asce)Gm.1943-5622.0001642.
- 18. Xu C, Chen YL, Wang SR, Javadi A, Du X, Azzam R. Mechanical properties of tonalite subjected to combined effects of chemical corrosion and freeze-thaw cycles. Appl Sci. 2019. https://doi.org/10.3390/app9183890.
- 19. Zhu QQ, Li XB, Li DY, Ma CD. Experimental investigations of static mechanical properties and failure characteristics of damaged diorite after dynamic triaxial compression. In J RockMech Min Sci. 2022;153:105106. https:// doi. org/ 10. 1016/j.ijrmms.2022.105106.
- 20. Peng K, Zhang Y, Wang YM, Luo S. Static compression behavior and strength weakening mechanism of dynamically damaged granite after water soaking. Eng Fail Anal. 2024;156:107760.https://doi.org/10.1016/j.engfailanal.2023.107760.
- 21. Si XF, Luo Y, Luo S. Influence of lithology and bedding orientation on failure behavior of “D” shaped tunnel. Theor Appl FractMech. 2024;129:104219. https://doi.org/10.1016/j.tafmec.2023.104219.
- 22. Xiao JQ, Ding DX, Xu G, Jiang FL. Inverted S-shaped model for nonlinear fatigue damage of rock. In J Rock Mech Min Sci.2009;46(3):643–8. https:// doi. org/ 10. 1016/j. ijrmms. 2008. 11.002.
- 23. Zhang PL, Gong FQ, Luo S, Si XF, Xu L. Damage constitutive model of uniaxially compressed coal material considering energy dissipation. J Mater Res Technol. 2023;27:920–931. https://doi.org/10.1016/j.jmrt.2023.09.281.
- 24. Hu H, Zheng QQ, Gao X, Cheng B, Wang QQ, Ni X. Fracture characteristics and geometric fractal of damaged sandstone under impact load. Shock Vib. 2020;2020:1–10. https://doi.org/10.1155/2020/6617197.
- 25. Zheng QQ, Hu H, Yuan AY, Li MY, Wang HB, Wang MX, Zong Q, Zhang SY. Impact dynamic properties and energy evolution of damaged sandstone based on cyclic loading thre shold. Shock Vib.2020;2020:1–12. https://doi.org/10.1155/2020/6615602.
- 26. Wang AA, Cao S, Yilmaz E. Effect of height to diameter ratio on dynamic characteristics of cemented tailings back fills with fiber reinforcement through impact loading. Constr Build Mater.2022;322:126448. https://doi.org/10.1016/j.conbuildmat.2022.126448.
- 27. Mishra S, Khetwal A, Chakraborty T. Dynamic characterisation of gneiss. Rock Mech Rock Eng. 2019;52(1):61–81. https://doi.org/10.1007/s00603-018-1594-y.
- 28. Pankow M, Attard C, Waas AM. Specimen size and shape effectin split Hopkinson pressure bar testing. J Strain Anal Eng Des.2009;44(8):689–98. https://doi.org/10.1243/03093247jsa538.
- 29. Kao SM, Zhao GM, Xu WS, Cheng X, Dong CL, Zhang RF.Experimental study of the association between sandstone size effect and strain rate effect. J Mech Sci Technol. 2020;34(9):3597–608. https://doi.org/10.1007/s12206-020-0811-2.
- 30. Du J. Study on rock impact dynamic characteristics under different length-diameter-ratio. Changsha: Central South University; 2011.
- 31. Ping Q, Zhang H, Su HP. Study on dynamic compression mechanical properties of limestone with different lengths. Chin J RockMech Eng. 2018;37:3891–7. https://doi.org/10.13722/j.cnki.jrme.2018.0646.
- 32. Zhao GM, Zhou J, Meng XR, Kao SM, Zhang RE, Huang SJ. Dynamic impact compression characteristics of granite rocks with different length-diameter ratios. Chin J Rock Mech Eng.2021;40(7):1392–401. https://doi.org/10.13722/j.cnki.jrme.2020.1163.
- 33. Hong L, Li XB, Ma CD, Yin TB, Ye ZY, Liao GY. Study on size effect of rock dynamic strength and strain rate sensitivity. Chin JRock Mech Eng. 2008;27(3):526–33.
- 34. Hong L, Zhou ZL, Yin TB, Liao GY, Ye ZY. Energy consumption in rock fragmentation at intermediate strain rate. JCent South Univ. 2009;16(4):677–82. https://doi.org/10.1007/s11771-009-0112-5.
- 35. Huang BF, Fu S, Xiao Y. Uniaxial compressive behavior of graniteat high strain rates. Rock Mech Rock Eng. 2021;54(9):4695–721.https://doi.org/10.1007/s00603-021-02535-7.
- 36. Mishra S, Khetwal A, Chakraborty T, Basu D. Effect of loading characteristics and specimen size in split Hopkinson pressurebar test on high-rate behavior of phyllite. Arch Civ Mech Eng.2022;22(4):212. https://doi.org/10.1007/s43452-022-00534-1.
- 37. Zou CJ, Wong LNY. Size and geometry effects on the mechanical properties of carrara marble under dynamic loadings. RockMech Rock Eng. 2016;49(5):1695–708. https://doi.org/10.1007/s00603-015-0899-3.
- 38. Zou CJ, Cheng Y, Li JC. Strain rate and size effects on the brit-tleness indexes of Carrara marble. In J Rock Mech Min Sci.2021;146:104860. https://doi.org/10.1016/j.ijrmms.2021.104860.
- 39. Dyskin AV, Pasternak E, Qi CZ, Xia C, Qu XL. A possible mechanism of failure in dynamic uniaxial compression and thesize effect. Eng Fract Mech. 2021;257:108005. https://doi.org/10.1016/j.engfracmech.2021.108005.
- 40. Qi CZ, Wang MY, Bai JP, Li KR. Mechanism underlying dynamic size effect on rock mass strength. Int J Impact Eng. 2014;68:1–7.https://doi.org/10.1016/j.ijimpeng.2014.01.005.
- 41. Qi CZ, Wang MY, Wang ZF, Li XZ. Study on the coupling effect of sample size and strain rate on rock compressive strength. RockMech Rock Eng. 2023;56:5103–14. https:// doi. org/ 10. 1007/s00603-023-03309-z.
- 42. Qi CZ, Yan FY, Zhao F, Li XZ, Chen HX. On the nature of energy-horizon and determination of length scales in dynamic fragmentation of rocks. Int J Impact Eng. 2022;166:104242.https://doi.org/10.1016/j.ijimpeng.2022.104242.
- 43. Luo S, Gong FQ, Li LL, Peng K. Linear energy storage and dissipation laws and damage evolution characteristics of rock under triaxial cyclic compression with different confining pressures.Trans Nonferr Metal Soc. 2023;33(7):2168–82. https://doi.org/10.1016/S1003-6326(23)66251-X.
- 44. Gong FQ, Li XH, Rao QH, Liu XL. Reference method for determining sample size in SHPB tests of rock materials. J VibShock. 2013;32:24–8.
- 45. Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F. Suggested methods for determining the dynamic strength parameters and modeI fracture toughness of rock materials. In JRock Mech Min Sci. 2012;49:105–12. https://doi.org/10.1016/j.ijrmms.2011.10.004.
- 46. Li XB, Lok TS, Zhao J, Zhao PJ. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks. In J Rock Mech Min Sci.2000;37(7):1055–60. https://doi.org/10.1016/S1365-1609(00)00037-X.
- 47. Peng K, Liu ZP, Zou QL, Zhang ZY, Zhou JQ. Static and dynamic mechanical properties of granite from various burial depths. RockMech Rock Eng. 2019;52:3545–66. https:// doi. org/ 10. 1007/s00603-019-01810-y.
- 48. Gong FQ, Si XF, Li XB, Wang SY. Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar. Chin J Rock Mech Eng.2019;113:211–9. https://doi.org/10.1016/j.ijrmms.2018.12.005.
- 49. Li XB, Zhou ZL, Lok TS, Hong L, Yin TB. Innovative testing technique of rock subjected to coupled static and dynamic loads.In J Rock Mech Min Sci. 2008;45(5):739–48. https://doi.org/10.1016/j.ijrmms.2007.08.013.
- 50. Gong FQ, Li XQ, Liu XL. Preliminary experimental study of characteristics of rock subjected to 3D coupled static and dynamic loads. Chin J Rock Mech Eng. 2011;30:1179–90.
- 51. Goodman RE. Introduction to rock mechanics. New York: Wiley;1989.
- 52. Voyiadjis GZ, Kattan PI. A comparative study of damage variables in continuum damage mechanics. Int J Damage Mech.2008;18(4):315–40. https://doi.org/10.1177/1056789508097546.
- 53. Bian K, Liu J, Zhang W, Zheng XQ, Ni S, Liu Z. Mechanical behavior and damage constitutive model of rock subjected to water-weakening effect and uniaxial loading. RockMech Rock Eng. 2019;52(1):97–106. https:// doi. org/ 10. 1007/s00603-018-1580-4.
- 54. Li XB, Zou Y, Zhou ZL. Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method. Rock Mech Rock Eng. 2014;47(5):1693–709. https://doi.org/10.1007/s00603-013-0484-6.
- 55. Li XB, Gu DS. Rock dynamics. Changsha: Central South University of Technology Press; 1994.
- 56. Zhang H, Ping Q, Su HP. Study on dynamic compression SHPB test of limestone with different length diameter ratios. Coal SciTechnol. 2018;46(8):38–43.
- 57. Luo S, Gong FQ. Evaluation of energy storage and release potentials of highly stressed rock pillar from rockburst control perspectives. In J Rock Mech Min Sci. 2023;163:105324. https://doi.org/10.1016/j.ijrmms.2022.105324.
- 58. Luo S, Gong FQ, Peng K. Theoretical shear damage characterization of intact rock under compressive-shear stress considering energy dissipation. Int J Damage Mech. 2023;32(7):962–83.https://doi.org/10.1177/10567895231173717.
- 59. Peng K, Yi GS, Wang YM, Luo S, Wu H. Experimental and theoretical analysis of spalling in deep hard rock tunnels with different arch structures. Theor Appl Fract Mech. 2023;127:104054. https://doi.org/10.1016/j.tafmec.2023.104054.
- 60. Li XF, Li HB, Zhang QB, Jiang JL, Zhao J. Dynamic fragmentation of rock material: Characteristic size, fragment distribution and pulverization law. Eng Fract Mech. 2018;199:739–59. https://doi.org/10.1016/j.engfracmech.2018.06.024.
- 61. Li XB, Lok TS, Zhao J. Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng.2005;38(1):21–39. https://doi.org/10.1007/s00603-004-0030-7.
- 62. Zhou ZL, Cai X, Li XB, Cao WZ, Du XM. Dynamic response and energy evolution of sandstone under coupled static–dynamic compression: Insights from experimental study into deep rock engineering applications. Rock Mech Rock Eng. 2020;53:1305–31. https://doi.org/10.1007/s00603-019-01980-9.
- 63. Lu XC, Xu JY, Ge HH, Zhao DH, Bai EL. Effects of confining pressure on mechanical behaviors of sandstone under dynamic impact loads. Chin J Rock Mech Eng. 2010;29:193–201.
- 64. Peng K, Liu ZP, Zou QL, Wu QH, Zhou JQ. Mechanical property of granite from different buried depths under uniaxial compression and dynamic impact: An energy-based investigation. Powder Technol. 2020;362:729–44. https://doi.org/10.1016/j.powtec.2019.11.101.
- 65. Gong FQ, Li XH, Liu X. Tests for sandstone mechanical properties and failure model under triaxial SHPB loading. J Vib Shock.2012;31:29–32. https://doi.org/10.13465/j.cnki.jvs.2012.08.006.
- 66. Zhao K, Yang D, Zeng P, Huang Z, Wu W, Li B, Teng T. Effect of water content on the failure pattern and acoustic emission characteristics of red sandstone. In J Rock Mech MinSci. 2021;142:104709. https:// doi. org/ 10. 1016/j. ijrmms. 2021.104709.
- 67. Michalske TA, Freiman SW. A molecular interpretation of stress corrosion in silica. Nature. 1982;295(5849):511–2. https://doi.org/10.1038/295511a0.
- 68. Hadizadeh J, Law RD. Water-weakening of sandstone and quartz-ite deformed at various stress and strain rates. Int J Rock MechMin Sci Geomech Abstr. 1991;28:431–9. https://doi.org/10.1016/0148-9062(91)90081-V.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b3b79a6-e884-4699-b6db-3bea2b7248f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.