PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of two-component armour

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents research on optimization of two-layer armour subjected to the normal impact of the 7.62x54 B32 armour piercing (AP) projectile. There were analysed two cases in which alumina Al2O3 was supported by aluminium alloy AA2024-T3 or armour steel Armox 500T. The thicknesses of layers were determined to minimize the panel areal density whilst satisfying the constraint, which was the maximum projectile velocity after panel perforation. The problem was solved through the utilization of LS-DYNA, LS-OPT and HyperMorph engineering software. The axisymmetric model was applied to the calculation in order to provide sufficient discretization. The response of the aluminium alloy, armour steel and projectile material was described with the Johnson-Cook model, while the one of the alumina with the Johnson-Holmquist model. The study resulted in the development of a panel optimization methodology, which allows the layer thicknesses of the panel with minimum areal density to be determined. The optimization process demonstrated that the areal density of the lightest panel is 71.07 and 71.82 kg/m2 for Al2O3-Armox 500T and Al2O3-AA2024-T3, respectively. The results of optimization process were confirmed during the experimental investigation.
Rocznik
Strony
173–--179
Opis fizyczny
Bibliogr. 28, wykr., rys., tab., fot.
Twórcy
Bibliografia
  • [1] J. Lopez-Puente, A. Arias, R. Zaera, and C. Navarro, “The effect of thickness of the adhesive layer on the ballistic limit of ceramic/metal armours: an experimental and numerical study”, Int J. Impact Eng. 32, 321-336 (2005).
  • [2] M.L. Wilkins, C.F. Cline, and C.A. Honodel, Fourth Progress Report of Light Armour Program. Report UCRL 50694, Lawrence Radiation Laboratory, Lawrance, 1969.
  • [3] R.M. Ogorkiewicz, “Development of lightweight armour system”, Proc. LASS 1, CD-ROM (1995).
  • [4] P.J. Hazell, Ceramic Armour: Design and Defeat Mechanisms, Argos Press, Canberra, 2006.
  • [5] E. Lach and W.G. Pround, “Lightweight materials for passive light armour systems”, LWAG e- J. 1, 1-14 (2006).
  • [6] A.L. Florence, Interaction of Projectiles and Composite Armor. Part 2. Report No. AMMRC-CR-69-15, Stanford Research Institute, Stanford, 1969.
  • [7] J.G. Hetherington, “Optimization of two-component composite armours”, Int. J. Impact Eng. 12 (3), 409-414 (1992).
  • [8] B. Wang and G. Lu, “On the optimization of two-component plates against ballistic impact”, J. Mater. Proc. Technol. 57, 141-145 (1996).
  • [9] J. Shi and D. Grow, “Effect of double constraints on the optimization of two-component armor systems”, Compos Struct 79, 445-453 (2007).
  • [10] G. Ben-Dor, A. Dubinsky, and T. Elperin, “Improved Florence model and optimization of two-component armor against single impact or two impacts”, Compos Struct 88, 158-165 (2009).
  • [11] A.A. Growenwold and J.A. Snyman, “Global optimization using dynamic search trajectories”, J. Global Optim. 24, 51-60 (2002).
  • [12] N. Stander, W. Roux, T. Goel, T. Eggleston, and K. Craig, LSOPT User’s Manual. A Design Optimization and Probabilistic Analysis Tool for the Engineering Analyst, Livermore Software Technology Corporation, Livermore, 2010.
  • [13] M. Luzar, Ł. Sobolewski, W. Miczulski, and J. Korbicz, “Prediction of corrections for the Polish time scale UTC (PL) using artificial neural networks”, Bull. Pol. Ac.: Tech. 61 (3), 589-594 (2013).
  • [14] C.T. Kowalski and M. Kamiński, “Rotor fault detector of the converted-fed induction motor based on RBF neural network”, Bull. Pol. Ac.: Tech. 62 (1), 69-76 (2014).
  • [15] H.E. Romeijn and R.L. Smith, “Simulated annealing and adaptive search in global optimization”, Probab. Eng. Inf. Sci. 8, 571-590 (1994).
  • [16] J.A. Snyman, “The LFOPC leap-frog algorithm for constrained optimization”, Comput. Math. Appl. 40, 1085-1096 (2000).
  • [17] W. Moćko and Z.L. Kowalewski, “Perforation test as an accuracy evaluation tool for a constitutive model of austenitic steel”, Arch Metall. Mater. 58 (4), 1105-1110 (2013).
  • [18] M. Jutras, “Improvement of the characterization method of the Johnson-Cook model”, Master Thesis, Laval University, Laval, 2008.
  • [19] M. Nilsson, Constitutive Model for ARMOX 500T and ARMOX 600T at Low and Medium Strain Rates. Technical Report FOIR-1068-SE, Swedish Defence Research Agency, Stockholm, 2003.
  • [20] W.J. Kury, D. Breithaupt, and M.C. Tarver, “Detonation waves in trinitrotoluene”, Shock Waves 9, 227-237 (1999).
  • [21] B. Adams, “Simulation of ballistic impacts on armored civil vehicles”, Master Thesis, Eindhoven University of Technology, Eindhoven, 2003.
  • [22] V. Panov, “Modelling of behaviour of metals at high strain rates”, PhD Thesis, Cranfield University, Cranfield, 2006.
  • [23] T. Wierzbicki, Y. Bao, Y.W. Lee, and Y. Bai, “Calibration and evaluation of seven fracture models”, Int. J. Mech. Sci. 47, 719-743 (2005).
  • [24] D.S. Cronin, K. Bui, C. Kaufmann, G. McIntosh, and T. Berstad, “Implementation and validation of the Johnson- Holmquist ceramic material model in LS-Dyna”, Proc. 4th Eur. LS-DYNA Users Conf. 1, 47-60 (2003).
  • [25] T. Li, F. Grignon, D.J. Benson, K.S. Vecchio, E.A. Olevsky, F. Jiang, A. Rohatgi, R.B. Schwarz, and M.A. Meyers, “Modeling the elastic properties and damage evolution in Ti-Al3Ti metalintermetallic laminate (MIL) composites”, Mater. Sci. Eng. A 374, 10-26 (2004).
  • [26] A. Tasdemirci and I.W. Hall, “Numerical and experimental studies of damage generation in multi-layer composite materials at high strain rates”, Int. J. Impact Eng. 34, 189-204 (2007).
  • [27] T. Demir, M. Ubeyli, R.O. Yildirim, and M.S. Karakas, “Investigation of the ballistic performance of alumina/4340 steel laminated composite armor against 7.62 armor piercing projectiles”, Proc. 17th Int. Metallurgical & Materials Conf. 1, 1-7 (2008).
  • [28] N. Kilic and B. Ekici, “Ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition”, Mater Design 44, 35-48 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b3b1cc8-5072-438a-8479-b76f599c50ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.