PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Novel Foam Coating Approach to Produce Abrasive Structures on Textiles

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abrasive materials are classified as paper, nonwoven, or plastic-based multilayer structures, which are used for different kinds of surface finishing. Currently, the production of abrasive structures on textiles is carried out by spraying a slurry of binder and abrasive particles, e.g., Al2O3 or SiC, with subsequent drying and curing of the binder. The drawback of this production method is the poor runnability of the spraying process. Even small variations in the process parameters may lead to an uneven coating. Therefore, a novel coating approach was developed to produce abrasive structures with foam coating on textile substrates. The foam coating method, which is commonly used in the textile industry, has the potential to produce an even coating layer. The runnability and reliability of the foam coating process are good even with high solids. From a workplace safety perspective, another advantage of foam coating is that there are no airborne particles during the coating process. A polyamide woven cloth was foam coated with an aqueous slurry containing abrasive grains (SiC), a water-based UV-curable acrylate binder, and cellulose nanocrystals (CNCs) to adjust the slurry rheology. Stable abrasive-binder foams were generated from the slurries even at high solids of 50% using an anionic foaming agent. The cloth was foam coated and dried, and the resin was cured with a LED-UV lamp on a pilot scale. It was observed that without the addition of CNC the foam did not stay on the surface of the cloth after coating. CNC acts as a rheology modifier and co-binder, which prevent the foam from penetrating deeper into the pores of the cloth. CNC also acted as a dispersing agent: the slurry was effectively stabilized by the CNC to prevent sedimentation of the abrasive grains. An organic solvent-free composition was introduced by combining CNC with a water-based UV-resin.
Rocznik
Strony
335--342
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Biomaterial Processing and Products, VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
autor
  • Biomaterial Processing and Products, VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
  • Mirka Ltd., FI-66850 Jepua, Finland
  • Biomaterial Processing and Products, VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
Bibliografia
  • [1] Sen, A. K. (2007). Coated Textiles - Principles and Applications, 2nd edn. CRC Press, Boca Raton, FL, USA, pp. 94–95.
  • [2] Kinnunen-Raudaskoski, K., Hjelt, T., Kenttä, E., Forsström, U. (2014). Thin coatings by foam coating. Tappi Journal, 13(7), 9–19.
  • [3] Kenttä, E., Koskela, H., Paunonen, S., Kinnunen-Raudaskoski, K., Hjelt, T. (2016). Functional surfaces produced by foam coating. Tappi Journal, 15(8), 515–521.
  • [4] Kroezen, A. B. J., Groot Wassink, J. (1986). Foam generation in rotor-stators mixers. JSDC, 102(12), 397–402.
  • [5] Magrabi, S. A., Dlugogorski, B. Z., Jameson, G. J. (1999). Bubble size distribution and coarsening of aqueous foams. Chemical Engineering Science, 54(18), 4007–4022.
  • [6] Bisperink, C. G. J., Ronteltap, A. D., Prins, A. (1992). Bubble-size distributions in foams. Advances in Colloid and Interface Science, 38, 13–32.
  • [7] Jing, J., Sun, J., Zhang, M., Wang, C., Xiong, X., et al. (2017). Preparation and rheological properties of a stable aqueous foam system. RSC Advances, 7(62), 39258–39269. doi: 10.1039/C7RA06799B.
  • [8] Engelsen, C. W., Isarin, J. C. Gooijer, H., Warmoeskerken, M. M. C. G., Groot Wassink, J. (2002). Bubble size distribution of foam. AUTEX Research Journal, 2(1), 14–27.
  • [9] Fameau, A. L., Salonen, A. (2014). Effect of particles and aggregated structures on the foam stability and aging. Comptes Rendus Physique, 15(8–9), 748–760. doi: 10.1016/j.crhy.2014.09.009.
  • [10] Horozov, T. S. (2008). Foams and foam films stabilized by solid particles. Current Opinion in Colloid and Interface Science, 13(3), 134–140. doi: 10.1016/j.cocis.2007.11.009.
  • [11] Hunter, T. N., Pugh, R. P., Franks, G. V., Jameson, G. J. (2008). The role of particles in stabilizing foams and emulsions. Advances in Colloid and Interface Science, 137(2), 57–81. doi: 10.1016/j.cis.2007.07.007.
  • [12] Husband, J. C., Hiorns, A. G. (2005). The trend towards low impact coating of paper and board. In The 6th European Coating Symposium Proceeding; Bradford, U. K.
  • [13] de Souza Lima, M. M., Borsali, R. (2004). Rodlike cellulose microcrystals: Structure, properties, and applications. Macromolecular Rapid Communiations, 25(7), 771–787. doi: 10.1002/marc.200300268.
  • [14] Tayeb, A. H., Amini, E., Ghasemi, S., Tajvidi, M. (2018). Cellulose nanomaterials-binding properties and applications: A review. Molecules 23(10), 2684. doi: 10.3390/molecules23102684.
  • [15] Lagerwall, J. P. F., Schütz, C., Salajkova, M., Noh, J., Park, J. H., et al. (2014). Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Materials, 6(1), 1–12. doi: 10.1038/am.2013.69.
  • [16] Salas, C., Nypelö, T., Rodriguez-Abreu, C., Rojas, R. (2014). Nanocellulose properties and applications in colloids and interfaces. Current Opinion in Colloid & Interface Science, 19(5), 383–396. doi: 10.1016/j.cocis.2014.10.003.
  • [17] Ching, Y. C., Ali, M. E., Abdullah, L. C., Choo, K. W., Kuan, Y. C., et al. (2016). Rheological properties of cellulose nanocrystal-embedded polymer composites: A review. Cellulose, 23(2), 1011–1030. doi: 10.1007/s10570-016-0868-3.
  • [18] Kim, J., Montero, G., Habibi, Y., Hinestroza, J. P., Genzer, J., et al. (2009). Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polymer Engineering and Science, 49(10), 2054–2061. doi: 10.1002/pen.21417.
  • [19] Li, M. C., Wu, Q., Song, K., De Hoop, C. F., Lee, S., et al. (2016). Cellulose nanocrystals and polyanionic cellulose as additives in bentonite water-based drilling fluids: Rheological modeling and filtration mechanisms. Industrial & Engineering Chemistry Research, 55(1), 133–143. doi: 10.1021/acs.iecr.5b03510.
  • [20] Oguzlu, H., Danumah, C., Boluk, Y. (2017). Colloidal behavior of aqueous cellulose nanocrystal suspensions. Current Opinion in Colloid & Interface Science, 29, 46–56. doi: 10.1016/j.cocis.2017.02.002.
  • [21] Buffiere, J., Balogh-Michels, Z., Borrega, M., Geiger, T., Zimmermann, T., et al. (2017). The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as pickering emulsion stabilizer. Carbohydrate Polymers, 178, 48–56. doi: 10.1016/j.carbpol.2017.09.028.
  • [22] Lappalainen, T., Lehmonen, J. (2012). Determinations of bubble size distribution of foam-fibre mixture using circular hough transform. Nordic Pulp & Paper Research Journal, 27(5), 930–939. doi: 10.3183/NPPRJ-2012-27-05-p930-939.
  • [23] Al-Qararah, A. M., Ekman, A., Hjelt, T., Ketoja, J., Kiiskinen, H., et al. (2015). A unique microstructure of the fiber networks deposited from foam-fiber suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 544–553. doi: 10.1016/j.colsurfa.2015.07.010.
  • [24] Buron, H., Mengual, O., Meunier, G., Cayre, I., Snabre, P. (2004). Optical characterization of concentrated dispersions: Applications to laboratory analyses and online process monitoring and control. Polymer International, 53(9), 1205–1209. doi: 10.1002/pi.1231.
  • [25] Jin, H., Zhou, W., Cao, J., Stoyanov, S. D., Blijdenstein, T. B., et al. (2012). Super stable foams stabilized by colloidal ethyl cellulose particles. Soft Matter, 8(7), 2194–2205. doi: 10.1039/C1SM06518A.
  • [26] Blijdenstein, T. B. J., de Groot, P. W. N., Stoyanov, S. D. (2010). On the link between foam coarsening and surface rheology: Why hydrophobins are so different. Soft Matter. 6(8), 1799–1808. doi: 10.1039/B925648B.
  • [27] Hu, Z., Xu, R., Cranston, E. D., Pelton, R. H. (2016). Stable aqueous foams from cellulose nanocrystals and methyl cellulose. Biomacromolecules, 17(12), 4095–4099. doi: 10.1021/acs.biomac.6b01641.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b3724ba-37ec-4391-a5a8-af6dbb6752cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.