PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Object tracking methods comparison

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Porównanie metod śledzenia obiektów
Języki publikacji
EN
Abstrakty
EN
Object tracking has been improved recently and now it seems to be one of the most challenging task in a computer vision area. In this article there are presented five top state-of-art algorithms. There were tested and the comparison of their results was performed and presented in plots and tables. A precision and an accuracy were evaluated, while some intruding factors, like rotations or blurring, were observed.
PL
Śledzenie obiektów jest coraz bardziej popularne i może być uznane za jedno z najbardziej wymagających zadań w obszarze wizji komputerowej. W pracy zaprezentowano pięć najbardziej wydajnych i najlepiej znanych algorytmów. Zostały one zaimplementowane, przetestowane i porównane. Wyniki tego porównania przedstawiono za pomocą wykresów oraz tabel. Podczas testów oceniane były precyzja i dokładność śledzenia. Obserwowano również wpływ czynników zakłócających na jakość śledzenia.
Twórcy
  • UTP University of Science and Technology, Faculty of Telecommunications, Computer Science and Electrical Engineering, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • UTP University of Science and Technology, Faculty of Telecommunications, Computer Science and Electrical Engineering, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • [1] Babenko B., 2008. Multiple instance learning: algorithms and applications. View Artic. PubMedNCBI Google Sch.
  • [2] Babenko B., Yang M.-H., Belongie S., 2009. Visual tracking with online multiple instance learning. [In:] Computer Vision and Pattern Recognition, CVPR 2009. IEEE Conference on. IEEE, 983-990.
  • [3] Bandyopadhyay S., Ghosh D., Mitra R., Zhao Z., 2015. MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets. Sci. Rep. 5, 8004.
  • [4] Coifman B., Beymer D., McLauchlan P., Malik J., 1998. A real-time computer vision system for vehicle tracking and traffic surveillance. Transp. Res. Part C Emerg. Technol. 6, 271-288 .
  • [5] Dietterich T.G., Lathrop R.H., Lozano-Pérez T., 1997. Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89, 31-71.
  • [6] Hare S., Golodetz S., Saffari A., Vineet V., Cheng M.-M., Hicks S.L., Torr P.H.S., 2016. Struck: Structured Output Tracking with Kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38, 2096-2109.
  • [7] Hare S., Saffari A., Golodetz S., 2014. Struck: Structured Output Tracking with Kernels. IEEE Trans. PATTERN Anal. Mach. Intell.
  • [8] Hare S., Saffari A., Torr P.H.S., 2011. Struck: Structured output tracking with kernels. Proc IEEE Int Conf Comput Vis. 263-270.
  • [9] Henriques J.F., Caseiro R., Martins P., Batista J., 2012. Exploiting the circulant structure of tracking-by-detection with kernels. [In:] European conference on computer vision. Springer, 702-715.
  • [10] Henriques J.F., Caseiro R., Martins P., Batista J., 2015. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37, 583-596.
  • [11] Kotzias D., Denil M., de Freitas N., Smyth P., 2015. From Group to Individual Labels Using Deep Features. Presented at the .
  • [12] Nigam A., Tiwari K., Gupta P., 2016. Multiple texture information fusion for finger-knuckle-print authentication system. Neurocomputing. 188, 190-205.
  • [13] Pestana J., Sanchez-Lopez J.L., Saripalli S., Campoy P., 2014. Computer vision based general object following for gps-denied multirotor unmanned vehicles. [In:] American Control Conference (ACC), IEEE, 1886-1891.
  • [14] Sherawat H., Dalal S., 2016. Palmprint Recognition System Using 2-D Gabor and SVM as Classifier. IJITR. 4, 3007-3010.
  • [15] Solis Montero A., Lang J., Laganiere R., 2015. Scalable kernel correlation filter with sparse feature integration. [In:] Proceedings of the IEEE International Conference on Computer Vision Workshops, 24-31.
  • [16] Viola P., Jones M., 2001. Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on.. IEEE, I-I.
  • [17] Visual Tracker Benchmark, http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html.
  • [18] Yang H., Shao L., Zheng F., Wang L., Song Z., 2011. Recent zadvances and trends in visual tracking: A review. Neurocomputing. 74, 3823-3831.
  • [19] Yang L., Georgescu B., Zheng Y., Wang Y., Meer P., Comaniciu D., 2011. Prediction Based Collaborative Trackers (PCT): A Robust and Accurate Approach Toward 3D Medical Object Tracking. IEEE Trans. Med. Imaging. 30, 1921-1932.
  • [20] Zhang K., Zhang L., Yang M.-H., 2012. Real-time compressive tracking. [In:] European Conference on Computer Vision, Springer, 864-877.
  • [21] Zhu G., Wang J., Wu Y., Lu H., 2015. Collaborative Correlation Tracking. [In:] BMVC, 184-1.
  • [22] Zhu W., Lou Q., Vang Y.S., Xie X., 2016. Deep Multi-instance Networks with Sparse Label Assignment for Whole Mammogram Classification. ArXiv Prepr. ArXiv161205968.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b2c5445-6957-4c93-8085-d89b3320b838
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.