PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and Numerical Analysis of Air Trapping in a Porous Medium with Coarse Textured Inclusions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a 2D upward infiltration experiment performed on a model porous medium consisting of fine sand background with two inclusions made of coarser sands. The purpose of the experiment was to investigate the effects of structural air trapping, which occurs during infiltration as a result of heterogeneous material structure. The experiment shows that a significant amount of air becomes trapped in each of the inclusions. Numerical simulations were carried out using the two-phase water-air flow model and the Richards equation. The experimental results can be reproduced with good accuracy only using a two-phase flow model, which accounts for both structural and pore-scale trapping. On the other hand, the Richards equation was not able to represent the structural trapping caused by material heterogeneity.
Czasopismo
Rocznik
Strony
2487--2509
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Geotechnics, Geology and Marine Civil Engineering, Gdańsk, Poland
autor
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Geotechnics, Geology and Marine Civil Engineering, Gdańsk, Poland
autor
  • Institute of Fluid Mechanics and Environmental Physics in Civil Engineering, Leibniz University Hannover, Hannover, Germany
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Geotechnics, Geology and Marine Civil Engineering, Gdańsk, Poland
autor
  • Institute of Fluid Mechanics and Environmental Physics in Civil Engineering, Leibniz University Hannover, Hannover, Germany
autor
  • Institute for Modelling of Hydraulic and Environmental Systems, University of Stuttgart, Stuttgart, Germany
Bibliografia
  • Aubertin, M., E. Cifuentes, S.A. Apithy, B. Bussière, J. Molson, and R.P. Chapuis (2009), Analyses of water diversion along inclined covers with capillary barrier effects, Can. Geotech. J. 46, 10, 1146-1164, DOI: 10.1139/T09-050.
  • Berkowitz, B., S.E. Silliman, and A.M. Dunn (2004), Impact of the capillary fringe on local flow, chemical migration and microbiology, Vadose Zone J. 3, 2, 534-548.
  • Bogacz, P., J. Kaczmarek, and D. Leśniewska (2006), Influence of air entrapment on flood embankment failure mechanics – model tests, Technol. Sci. 11, 188- 201.
  • Brooks, R.H., and A.T. Corey (1964), Hydraulic properties of porous media, Technical Report, Hydrology Paper 3, Colorado State University, Fort Collins, Colorado, USA.
  • Burdine, N.T. (1953), Relative permeability calculations from pore size distribution data, J. Petrol. Technol. 5, 03, 71-78.
  • de Neef, M.J., and J. Molenaar (1997), Analysis of DNAPL infiltration in a medium with a low permeable lens, Comput. Geosci. 1, 2, 191-214, DOI: 10.1023/ A:1011569329088.
  • Delfs, J.O., W. Wang, T. Kalbacher, A.K. Singh, and O. Kolditz (2013), A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow, Environ. Earth Sci. 69, 2, 395-414, DOI: 10.1007/ s12665-013-2420-1.
  • Dunn, A.M. (2005), Air and LNAPL entrapment in the partially saturated fringe: Laboratory and numerical investigations, Ph.D. Thesis, University of Notre Dame, Indiana, USA.
  • Dunn, A.M., and S.E. Silliman (2003), Air and water entrapment in the vicinity of the water table, Ground Water 41, 729-734.
  • Forsyth, P.A. (1988), Comparison of the single-phase and two-phase numerical model formulation for saturated-unsaturated groundwater flow, Comput. Meth. Appl. Mech. Eng. 69, 2, 243-259, DOI: 10.1016/0045-7825(88) 90190-9.
  • Haberer, C.M., M. Rolle, O.A. Cirpka, and P. Grathwohl (2015), Impact of heterogeneity on oxygen transfer in a fluctuating capillary fringe, Ground Water 53, 1, 57-70, DOI: 10.1111/gwat.12149.
  • Hammecker, C., A.C.D. Antonino, J.L. Maeght, and P. Boivin (2003), Experimental and numerical study of water flow in soil under irrigation in northern senegal: evidence of air entrapment, Europ. J. Soil Sci. 54, 3, 491-503, DOI: 10.1046/j.1365-2389.2003.00482.x.
  • Helmig, R. (1997), Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems, Springer.
  • Kuang, X., J.J. Jiao, L. Wan, X. Wang, and D. Mao (2011), Air and water flows in a vertical sand column, Water Resour. Res. 47 4, W04506, DOI: 10.1029/ 2009WR009030.
  • Lenhard, R.J., J.C. Parker, and S. Mishra (1989), On the correspondence between Brooks-Corey and van Genuchten models, J. Irrig. Drain. Eng. ASCE 115, 4, 744-751, DOI: 10.1061/(ASCE)0733-9437(1989)115:4(744).
  • Leśniewska, D., H. Zaradny, P. Bogacz, and J. Kaczmarek (2008), Study of flood embankment behaviour induced by air entrapment. In: P. Samuels, S. Huntington, W. Allsop, and J. Harrop (eds.), Flood risk Management: Research and Practice, Taylor & Francis, London, 655-665.
  • Likos, W.J., N. Lu, and J.W. Godt (2014), Hysteresis and uncertainty in soil waterretention curve parameters, J. Geotech. Geoenviron. Eng. 140, 4, 04013050, DOI: 10.1061/(ASCE)GT.1943-5606.0001071.
  • Luckner, L., M.Th. van Genuchten, and D.R. Nielsen (1989), A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface, Water Resour. Res. 25, 10, 2113-2124, DOI: 10.1029/ WR025i010p02187.
  • Marinas, M., J.W. Roy, and J.E. Smith (2013), Changes in entrapped gas content and hydraulic conductivity with pressure, Ground Water 51, 1, 41-50, DOI: 10.1111/j.1745-6584.2012.00915.x.
  • McLeod, H.C., J.W. Roy, and J.E. Smith (2015), Patterns of entrapped air dissolution in a two-dimensional pilot-scale synthetic aquifer, Ground Water 53, 2, 271-281, DOI: 10.1111/gwat.12203.
  • Mikelic, A., C.J. van Duijn, and I.S. Pop (2002), Effective equations for two-phase flow with trapping on the micro scale, SIAM J. Appl. Math. 62, 5, 1531- 1568, DOI: 10.1137/S0036139901385564.
  • Mualem, Y. (1976), A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res. 12, 3, 513-522, DOI: 10.1029/ WR012i003p00513.
  • Oldenburg, C.M., and K. Pruess (1993), On numerical modeling of capillary barriers, Water Resour. Res. 29, 4, 1045-1056, DOI: 10.1029/92WR02875.
  • Prédélus, D., A.P. Coutinho, L. Lassabatere, B. Bien Le, T. Winiarski, and R. Angulo-Jaramillo (2015), Combined effect of capillary barrier and layered slope on water, solute and nanoparticle transfer in an unsaturated soil at lysimeter scale, J. Contam. Hydrol. 181, 69-81, DOI: 10.1016/j.jconhyd. 2015.06.008.
  • Richards, L.A. (1931), Capillary conduction of liquids through porous medium, J. Appl. Physics. 1, 318-333, DOI: 10.1063/1.1745010.
  • Saadatpoor, E., S.L. Bryant, and K. Sepehrnoori (2009), Effect of capillary heterogeneity on buoyant plumes: a new local mechanism, Energy Procedia 1, 1, 3299-3306, DOI: 10.1016/j.egypro.2009.02.116.
  • Schweizer, B. (2008), Homogenization of degenerate two-phase flow equations with oil-trapping, SIAM J. Math. Anal. 39, 1740-1763, DOI: 10.1137/ 060675472.
  • Silliman, S.E., B. Berkowitz, J. Simunek, and M.Th. Van Genuchten (2002), Fluid flow and solute migration within the capillary fringe, Ground Water 40, 1, 76-84, DOI: 10.1111/j.1745-6584.2002.tb02493.x.
  • Szymańska, P. (2012), Flow in unsaturated porous media: Numerical and experimental evaluation of the two-phase model and the richards equation, M.Sc. Thesis, Gdańsk University of Technology, Gdańsk, Poland.
  • Szymkiewicz, A. (2013), Modelling Water Flow in Unsaturated Porous Media: Accounting for Nonlinear Permeability and Material Heterogeneity, GeoPlanet: Earth and Planetary Sciences, Springer.
  • Szymkiewicz, A., R. Helmig, and H. Kuhnke (2011), Two-phase flow in heterogeneous porous media with non-wetting phase trapping, Transport Porous Med. 86, 1, 27-47, DOI: 10.1007/s11242-010-9604.
  • Szymkiewicz, A., R. Helmig, and I. Neuweiler (2012), Upscaling unsaturated flow in binary porous media with air entry pressure effects, Water Resour. Res. 48, 4, W04522, DOI: 10.1029/2011WR010893.
  • Szymkiewicz, A., I. Neuweiler, and R. Helmig (2014), Influence of heterogeneous air entry pressure on large scale unsaturated flow in porous media, Acta Geophys. 62, 5, 1179-1191, DOI: 10.2478/s11600-014-0224-7.
  • Tegnander, C. (2001), Models for groundwater flow: A numerical comparison between Richards model and fractional flow model, Transport Porous Med. 43, 2, 213-224, DOI: 10.1023/A:1010749708294.
  • Touma, J., and M. Vauclin (1986), Experimental and numerical analysis of twophase infiltration in a partially saturated soil, Transport Porous Med, 1, 1, 27-55, DOI: 10.1007/BF01036524.
  • Touma, J., G. Vachaud, and J.-Y. Parlange (1984), Air and water flow in a sealed, ponded vertical soil column: experiment and model, Soil Science 137, 3, 181-187.
  • Vachaud, G., M. Vauclin, D. Khanji, and M. Wakil (1973), Effects of air pressure on water flow in an unsaturated stratified vertical column of sand, Water Resour. Res. 9, 1, 160-173, DOI: 10.1029/WR009i001p00160.
  • van Duijn, C.J., H. Eichel, R. Helmig, and I.S. Pop (2007), Effective equations for two-phase flow in porous media: the effect of trapping at the micro-scale, Transport Porous Med. 69, 3, 411-428, DOI: 10.1007/s11242-006-9089-9.
  • van Genuchten, M.Th. (1980), A closed form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44, 5, 892-898, DOI: 10.2136/sssaj1980.03615995004400050002x.
  • Vasin, M., P. Lehmann, A. Kaestner, R. Hassanein, W. Nowak, R. Helmig, and I. Neuweiler (2008), Drainage in heterogeneous sand columns with different geometric structures, Adv. Water Resour. 31, 9, 1205-1220, DOI: 10.1016/j.advwatres.2008.01.004.
  • Webb, S.W. (1998), Using TOUGH2 to model capillary barriers. In: Proc. TOUGH Workshop 1998, 4-6 May 1998, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
  • Yakirevich, A., T.J. Gish, J. Simunek, M.Th. Van Genuchten, Y.A. Pachepsky, T.J. Nicholson, and R.E. Cady (2010), Potential impact of a seepage face on solute transport to a pumping well, Vadose Zone J. 9, 3, 686-696, DOI: 10.2136/vzj2009.0054.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b2b649f-c5bc-447e-b748-98c8072ba846
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.