Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Microrobots and rheology
Języki publikacji
Abstrakty
W artykule przedstawiono zagadnienia związane z możliwością zastosowania mikrorobotów w biomedycynie a także wyzwania w modelowaniu mikrorobotów w biopłynach nienewtonowskich, takich jak ciało szkliste oka. Poruszono, między innymi, kwestię wykorzystania mikrorobotów w medycynie nieinwazyjnej, problematykę związaną z istniejącymi metodami leczenia chorób oczu, a także zagadnienia związane z modelowaniem reologicznym biopłynów.
Microrobots are currently investigated for their potential use in biomedical applications. The vitreous humour of the eye represents a location where microrobots could potentially perform therapeutic or diagnostic tasks. This paper aims at developing general strategies for the modeling of the vitreous humour in view of the potential use of microdevices in non-Newtonian environments. The suitability of biomedical applications of microrobotics as well as existing strategies and limitations of existing ocular drug-delivery methods are examined. Finally, elements of non-Newtonian fluids mechanics are presented along with a discussion on different rheological models.
Czasopismo
Rocznik
Tom
Opis fizyczny
Bibliogr. 23 poz., rys., tab., pełen tekst na CD
Twórcy
autor
- AGH Akademia Górniczo-Hutnicza w Krakowie, Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Bibliografia
- [1] Baino F.: Towards an ideal biomaterial for vitreous replacement: Historical overview and future trends, „Acta Biomaterialia”, nr 7, 2011, s. 921–935.
- [2] Barchan-Kucia K., Krwawicz L.: Age-related maclar degeneration (AMD). Current state and future trends, „Akademia Świętokrzyska Medical Studies”, tom 3, Kielce 2006.
- [3] Dalton P. D., Chirila T. V., Hong Y., Jefferson A.: Oscillatory shear experiments as criteria for potential vitreous substitutes, „Polymer Gels and Networks”, 3, 1995, s. 429–444.
- [4] Ergeneman O., Dogangil G., Kummer M.P., Abbott J.J., Nazeeruddin M.K., Nelson B.J.: A magnetically controlled wireless optical oxygen sensor for intraocular measurements, „IEEE Sens. J.”, 8(1), 2008, s. 29–37.
- [5] Kleinberg T.T., Tzekov R.T., Stein L., Ravi N., Kaushal S.: Vitreous Substitutes: A Comprehensive Review, „Survey of Ophthalmology”, tom 56 (4), 2011.
- [6] Kósa G, Shoham M, Zaaroor M.: Propulsion method for swimming microrobots, „IEEE Trans.Robot.”, 23(1), 2007, s. 137–50.
- [7] Kummer et al.: Artificial Vitreous Humor for In Vitro Experiments, „Proc. IEEE Int. Conf. Eng. Med. Biol. Soc.”, Lyon, August 23–26, 2007.
- [8] Kummer M. P.: 5-DOF Wireless Micromanipulation Using Soft-Magnetic Core Electromagnets, PhD Thesis, Diss. ETH No. 19250, 2010.
- [9] Lee, B., Litt, M., Buchsbaum, G.: Rheology of the vitreous body. Part I: Viscoelasticity of human vitreous, „Biorheology”, 29, 1992, s. 521–533.
- [10] Lee, B., Litt, M., Buchsbaum, G.: Rheology of the vitreous body: Part II: Viscoelasticity of bovine and porcine vitreous, “Biorheology”, 31, 1994, s. 327–338.
- [11] Martel S, Mathieu J-B, Felfoul O, Chanu A, Aboussouan E, et al.: Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system, “Appl. Phys. Lett.”, 90(11), 2007,114105.
- [12] Martel S, Mohammadi M, Felfoul O, Zhao L, Pouponneau P.: Flagellated magnetotactic bacterias controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature, “Int. J. Robot. Res.”, 28(4), 2009, s. 571–782.
- [13] Mathieu J-B., Martel S., Yahia L. H., Soulez G., Beaudoin G.: MRI Systems as a Mean of Propulsion for a Microdevice in Blood Vessels, Proceedings of the 25th Annual Intemalional Conference of the IEEE EMBS, Cancun, Mexico, September 17-21, 2003
- [14] Misiuk-Hojło M., Grzech A., Słowinski K.: Comparison of physical characteristics of polymers used in retinal detachment surgery, „Polymers in Medicine”, tom 37 (4), 2007
- [15] Nelson B. J., Kaliakatsos I. K., Abbott J. J.: Microrobots for Minimally Invasive Medicine, „Annu. Rev. Biomed. Eng.”, 12, 2010, s. 55–85.
- [16] Nickerson C.S., Park J., Kornfield J.A., Karageozian H.: Rheological properties of the vitreous and the role of hyaluronic acid, „Journal of Biomechanics”, tom 41, 2008, s. 1840–1846.
- [17] Pané S, Ergeneman O.; Sivaraman K. M.; Lühmann T.; Hall H.; Nelson Bradley J.: Strategies for Drug-Delivery and Chemical Sensing using Biomedical Microrobots, IEEE 4th International Conf. on Nano/Molecular Medicine and Engineering, December 2010.
- [18] Pieczyński J., Bandurska-Stankiewicz E., Wiatr-Bykowska D., Rutkowska J.: Current methods used in diabetic eye disease treatment, „Experimental and Clinical Diabetology”, Vol 10 (1), 2010, s. 11–16.
- [19] Prusak D., Uhl T., Petko M.: Mikrorobotyka nowy kierunek rozwoju robotyki Introduction to the problems of Microrobotics, „Pomiary Automatyka Kontrola – PAK”, nr 05, 2006, s. 5–8.
- [20] Roy S, Ferrara LA, Fleischman AJ, Benzel EC.: MEMS and neurosurgery. Therapeutic Micro/Nano Technology, ed. T Desai, S Bhatia, M Ferrari, Springer, New York 2006, s. 95–123.
- [21] Sharif-Kashani P., Hubschman J.-P, Sassoon D., Kavehpour H. P.: Rheology of the vitreous gel: Effects of macromolecule organization on the viscoelastic properties, „Journal of Biomechanics”, tom 44, nr 3, 2011, s. 419–423.
- [22] Walecki P.: Neurophysiology of eye movement, „EPISTEME”, nr 4, 2007, ISSN 1895–4421, s.159–176.
- [23] Zimmerman, R.L.: In vivo measurements of the viscoelasticity of the human vitreous-humor, “Biophysical Journal”, 29, 1980, s. 539–544. 115 Logistyka
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b27329a-24e2-438f-8708-9cd45b7d64d4