PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of 2,4,6-trichlorophenol from aqueous solutions using agricultural waste as low-cost adsorbents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Agricultural waste products including sunflower seed hulls, pumpkin seed shells, walnut shells and peanut shells were used as low-cost adsorbents for the removal of 2,4,6-trichlorophenol (TCP) from aqueous solutions. The effects of adsorbent dosage, pH and ionic strength on the adsorption of TCP were investigated. The results showed that the adsorption of TCP was pH dependent and increased upon increasing the ionic strength of the solution. The adsorption kinetics was found to follow a pseudo-second order kinetics. The equilibrium adsorption data were fitted to the Langmuir, Freundlich and Sips isotherms and the best results were achieved with the Freundlich model. The desorption of TCP using deionized water, water/methanol mixture or 5% sodium hydroxide was also studied. The results suggest that the tested materials may be used as an effective adsorbents without any treatment or any other modification for removal of TCP from the aqueous medium.
Rocznik
Strony
149--163
Opis fizyczny
Bibliogr. 27 poz., tab., rys.
Twórcy
  • Institute of Chemistry, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Chemistry, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Faculty of Environmental, Geomatic and Energy Engineering, Kielce University of Technology, ul. Studencka 2, 25-314 Kielce, Poland.
Bibliografia
  • [1] ALI I., ASIM M.,KHAN T.A., Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage., 2012, 113, 170.
  • [2] FEIZI M., JALALI M., Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues, J. Taiwan Inst. Chem. Eng., 2015, 54, 125.
  • [3] HAMEED B.H., Equilibrium and kinetic studies of methyl violet sorption by agricultural waste, J. Hazard. Mater., 2008, 154, 204.
  • [4] OSMA J.F., SARAVIA V., TOCA-HERRERA J.L., RODRIGUEZ COUTO S., Sunflower seed shells. A novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions, J. Hazard. Mater., 2007, 147, 900.
  • [5] ROJAS R., MORILLO J., USERO J., VANDERLINDEN E., EL BAKOURI H., Adsorption study of low-cost and locally available organic substances and a soil to remove pesticides from aqueous solutions, J. Hydrol., 2015, 520, 461.
  • [6] ROJAS R., VANDERLINDEN E., MORILLO J., USERO J., EL BAKOURI H., Characterization of sorption processes for the development of low-cost pesticide decontamination techniques, Sci. Total Environ., 2014, 488–489, 124.
  • [7] ÇELEKLI A., ÇELEKLI F., ÇIÇEK E., BOZKURT H., Predictive modeling of sorption and desorption of a reactive azo dye by pumpkin husk, Environ. Sci. Pollut. Res., 2014, 21, 5086.
  • [8] HAMEED B.H.,EL-KHAIARY M.I.,Removal of basic dye from aqueous medium using a novel agricultural waste material: pumpkin seed hull, J. Hazard. Mater., 2008, 155, 601.
  • [9] PEREZ-AMENEIRO M., BUSTOS G., VECINO X., BARBOSA-PEREIRA L., CRUZ J.M., MOLDES A.B., Heterogenous lignocellulosic composites as bio-based adsorbents for wastewater dye removal: a kinetic comparison, Water Air Soil Pollut., 2015, 226, 133.
  • [10] WITEK-KROWIAK A., SZAFRAN R.G., MODELSKI S., Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent, Desalination, 2011, 265, 126.
  • [11] KUŚMIEREK K., ŚWIĄTKOWSKI A., Removal of chlorophenols from aqueous solutions by sorption onto walnut, pistachio and hazelnut shells, Pol. J. Chem. Technol., 2015, 17 (1), 23.
  • [12] TEIXEIRA S., DELERUE-MATOS C., SANTOS L., Removal of sulfamethoxazole from solution by raw and chemically treated walnut shells, Environ. Sci. Pollut. Res., 2012, 19, 3096.
  • [13] DAHRI M.K., KOOH M.R.R., LIM L.B.L., Water remediation using low cost adsorbent walnut shell for removal of malachite green. Equilibrium, kinetics, thermodynamic and regeneration studies, J. Environ. Chem. Eng., 2014, 2, 1434.
  • [14] GILES C.H., MACEWANS T.H., NAKHWA N., SMITH D., Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc., 1960, 60, 3973.
  • [15] KUŚMIEREK K., DĄBEK L., KAMIŃSKI W., ŚWIĄTKOWSKI A., Evaluation of the usefulness of peat for removal of chlorophenols from water solutions, Ochr. Śr., 2013, 35 (2), 51. .
  • [16] LI Y., DENG Y.,CHEN B., Sorption of chlorophenols onto fruit cuticles and potato periderm, J. Environ. Sci., 2012, 24 (4), 675
  • [17] RANGABHASHIYAM S., ANU N., GIRI NANDAGOPAL M.S., SELVARAJU N., Relevance of isotherm models in biosorption of pollutants by agricultural byproducts, J. Environ. Chem. Eng., 2014, 2, 398.
  • [18] ZHANG Y., MANCKE R.G., SABELFELD M., GEISSEN S.U., Adsorption of trichlorophenol on zeolite and adsorbent regeneration with ozone, J. Hazard. Mater., 2014, 271, 178.
  • [19] ZHENG S., YANG Z., JO D.H., PARK Y.H., Removal of chlorophenols from groundwater by chitosan sorption, Water Res., 2004, 38, 2315.
  • [20] HAMEED B.H., Equilibrium and kinetics studies of 2,4,6-trichlorophenol adsorption onto activated clay, Colloids Surf. B, 2007, 307, 45.
  • [21] RADHIKA M., PALANIVELU K., Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent-kinetics and isotherm analysis, J. Hazard. Mater., 2006, B138, 116.
  • [22] SIVA KUMAR N., WOO H.-S., MIN K., Equilibrium and kinetic studies on biosorption of 2,4,6-trichlorophenol from aqueous solutions by Acacia leucocephala bark, Colloids Surf. B, 2012, 94, 125.
  • [23] DENIZLI A., CIHANGIR N., RAD A.Y., TANER M., ALSANCAK G., Removal of chlorophenols from synthetic solutions using Phanerochaete chrysosporium, Proc. Biochem., 2004, 39, 2025.
  • [24] HAMDAOUI O., NAFFRECHOUX E., Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters, J. Hazard. Mater., 2007, 147, 381.
  • [25] KUŚMIEREK K., ŚWIĄTKOWSKI A., SYGA P., DĄBEK L., Influence of chlorine atom number in chlorophenols molecules on their adsorption on activated carbon, Fresenius Environ. Bull., 2014, 23 (3a), 947.
  • [26] CZAPLICKA M., Sources and transformations of chlorophenols in the natural environment, Sci. Total Environ., 2004, 322, 21.
  • [27] CHEN G., WANG Y., PEI Z., Adsorption and desorption of 2,4,6-trichlorophenol onto and from ash as affected by Ag+, Zn2+, and Al3+, Environ. Sci. Pollut. Res., 2014, 21, 2002.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b23ec2c-1046-4a64-ad81-33dd671310f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.