Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The overall efficiency of battery energy storage systems (BESSs) strongly depends on the temperature uniformity of the batteries, usually disregarded in studies of the integrated performance of BESSs. This paper presents a new battery thermal management system (BTMS) using a personalized air supply instead of a central air supply. Thermal models are established to predict the thermal behavior of BESSs with 400 battery packs. Moreover, several optimizations comprising the effect of the position and number of air inlets, the number, and angle of the baffles on the air distribution in the ducts are proposed. The results show that the distributed air supply from the main air inlet makes the air velocity in the main air ducts more uniform. It is demonstrated that air deflection is the main source of airflow inhomogeneity at the air outlets. The airflow uniformity is better when the baffles are added at the entrance and the bottom of each riser duct than at other locations. The improved air supply scheme makes the nonuniformity coefficient of air velocity reduced from 1.358 to 0.257. The findings can guide the selection of a cooling form to enhance the safety of BESSs.
Rocznik
Tom
Strony
art. no. e140692
Opis fizyczny
Bibliogr. 26 poz. rys., tab.
Twórcy
autor
- College of Energy & Power Engineering, Jiangsu University of Science and Technology, Mengxi, Jingkou, Zhenjiang 212003, China
autor
- College of Energy & Power Engineering, Jiangsu University of Science and Technology, Mengxi, Jingkou, Zhenjiang 212003, China
autor
- College of Energy & Power Engineering, Jiangsu University of Science and Technology, Mengxi, Jingkou, Zhenjiang 212003, China
autor
- Key Laboratory of Aircraft environment control and life support, MIIT, Nanjing University of Aeronautics & Astronautics, Yudao Street, Nanjing 210016, China
autor
- Key Laboratory of Aircraft environment control and life support, MIIT, Nanjing University of Aeronautics & Astronautics, Yudao Street, Nanjing 210016, China
Bibliografia
- [1] Y. Shen, “Thermal analysis and optimization of container type energy storage system,” Electron. World, no. 11, pp. 29–30, 2017.
- [2] Ł. Nogal, S. Robak, and J. Bialek, “Advances in electrical power engineering,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 647–649, 2020, doi: 10.24425/bpasts.2020.134192.
- [3] P. Komarnicki, “Energy storage systems: power grid and energy market use cases,” Arch. Electr. Eng. ,vol. 65, no. 3, pp. 495–511, 2016, doi: 10.1515/aee-2016-0036.
- [4] X. Xie, et al., “Influencing factors of lithium-ion power battery safety,” Energy Storage Sci. Technol., vol. 6, no. 1, pp. 43-51, 2017, doi: 10.12028/j.issn.2095-4239.2016.0011.
- [5] Y. Zhang, C. Wang, and X. Tang, “Cycling degradation of an automotive LiFePO4 lithium-ion battery,” J. Power Sources, vol. 196, pp. 1513–1520, 2011, doi: 10.1016/j.jpowsour.2010.08.070.
- [6] X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, “Thermal runaway mechanism of lithium-ion battery for electric vehicles: A review,” Energy Storage Mater., vol. 10, pp. 246–267,2018, doi: 10.1016/j.ensm.2017.05.013.
- [7] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, “Thermal runaway caused fire and explosion of lithium-ion battery,” J. Power Sources, vol. 208, no. 24, pp. 210–224, 2012, doi: 10.1016/j.jpowsour.2012.02.038.
- [8] M. Klein, T. Song, and J. Park, “In-plane nonuniform temperature effects on the performance of a large-format lithium-ion pouch cell,” Appl. Energy, vol. 165, pp. 639–647, 2016, doi: 10.1016/j.apenergy.2015.11.090.
- [9] A. Pesaran, M. Keyser, G. Kim, S. Santhanagopalan, and K. Smith, “Tools for designing thermal management of batteries in electric drive vehicles,” in Advanced Automotive Battery Conference, 2013 ,pp. 4–8, doi: 10.2172/1064502.
- [10] P. Arora, R. White, and M. Doyle, “Capacity fade mechanisms and side reactions in lithium-ion batteries,” Cheminform, vol. 29, pp. 3647–3667, 1998, doi: 10.1002/chin.199847297.
- [11] B. Ziv, V. Borgel, D. Aurbach, J. Kim, X. Xiao, and B. Powell, “Investigation of the reasons for capacity fading in Li-ion battery cells batteries and energy storage,” J. Electrochem. Soc., vol. 161, pp. 1672–1680, 2014.
- [12] J. Wang et al., “Degradation of lithium ion batteries employing graphite negatives and nickel–cobalt–manganese oxide + spinel manganese oxide positives: part 1, aging mechanisms and life estimation,” J. Power Sources, vol. 269, pp. 937–948, 2014, doi: 10.1016/j.jpowsour.2014.07.028.
- [13] J. Jaguemont, L. Boulon, and Y. Dubé, “A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures,” Appl. Energy ,164 ,pp. 99–114,2016, doi: 10.1016/j.apenergy.2015.11.034.
- [14] Z. Rao and S. Wang, “A review of power battery thermal energy management,” Renew. Sust. Energ. Rev., vol. 15, pp. 4554–4571, 2011, doi: 10.1016/j.rser.2011.07.096.
- [15] Z. Ling, F. Wang, X. Fang, X. Gao, and Z. Zhang, “A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling,” Appl. Energy, vol. 148, pp. 403–409, 2015, doi: 10.1016/j.apenergy.2015.03.080.
- [16] L. Jin, P. Lee, X. Kong, Y. Fan, and S. Chou, “Ultra-thin minichannel LCP for EV battery thermal management,” Appl. Energy, vol. 113, pp. 1786–1794, 2014, doi: 10.1016/j.apenergy.2013.07.013.
- [17] Y. Huo, Z. Rao, X. Liu, and J. Zhao, “Investigation of power battery thermal management by using mini-channel cold plate,” Energy Conv. Manag., vol. 89, pp. 387–395, 2015, doi: 10.1016/j.enconman.2014.10.015.
- [18] Z. Zhang, et al., “Cooling and aseismicity study of the containerized energy storage systems,” Energy Storage Sci. Technol., vol. 2, no. 6, pp. 642–648, 2013, doi: 10.3969/j.issn.2095-4239.2013.06.012.
- [19] L. Wang, et al., “Thermal management structure design of lithium-ion battery pack for energy storage,” Power Supply Technol., vol. 35, no. 11, pp. 1351–1353,2011, doi: 10.3969/j.issn.1002-087X.2011.11.006.
- [20] X.Wang, et al., “Numerical simulation and optimization of container type energy storage system,” Energy Storage Sci. Technol., vol. 5, no. 4, pp. 577–582, 2016, doi: 10.12028/j.issn.2095-4239.2016.04.026.
- [21] H. Sun, R. Dixon, “Development of cooling strategy for an air cooled lithium-ion battery pack,” J. Power Sources, vol. 272, no. 25, pp. 404–414, 2014, doi: 10.1016/ j.jpowsour. 2014.08.107.
- [22] Z. Lu et al., “Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement,” Appl. Therm. Eng., vol. 136, pp. 28–40, 2018, doi: 10.1016/j.applthermaleng.2018.02.080.
- [23] Y. Liu, J. Zhang, “Design a J-type air-based battery thermal management system through surrogate-based optimization,” Appl. Energy, vol. 252, p. 113426, 2019, doi: 10.1016/j.apenergy.2019.113426.
- [24] B. Hba, et al., “A new concept of thermal management system in li-ion battery using air cooling and heat pipe for electric vehicles,” Appl. Therm. Eng., vol. 174, p. 115280, 2020, doi: 10.1016/j.applthermaleng.2020.115280.
- [25] H. Huang, H. Wang, J. Gu, and Y. Wu, “High-dimensional model representation-based global sensitivity analysis and the design of a novel thermal management system for lithium-ion batteries,” Energy Conv. Manag., vol. 190, pp. 54-72, 2019, doi: 10.1016/j.enconman.2019.04.013.
- [26] Z. Yao, et al., “Analysis and optimization of structural duct ventilation,” Mar. Technol., no. 5, pp. 82–88, 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b2026f8-672b-4b68-aee6-c757f73367a7