PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of shrinkage deformations in resin mortars modified with different waste materials

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Resin-based mortars are characterized by excellent strength parameters, together with very good chemical resistance and a short time to achieve installation and serviceability. However, a limitation of their use may be their relatively high curing shrinkage. This parameter can be improved by modifying the composition of mortars with, among other things, recycled materials. This article describes and compares the results of tests on four types of epoxy mortars: a control sample (unmodified) and three modified samples with waste polyethylene terephthalate glycolysate, each one containing additional waste polyethylene or rubber from car tires. A positive effect on the mechanical strength of the mortars was demonstrated thanks to the modification. The shrinkage of the mortars was monitored from the time of formation. The partial substitution of aggregate by rubber granules or polyethylene agglomerate reduced the shrinkage value of the mortars based on a glycolysate-modified matrix by 14.2 % and 7.1 %, respectively.
Rocznik
Tom
Strony
229--236
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Rzeszow University of Technology, Poland
  • Federal University of Ouro Preto, Brazil
  • Federal University of Ouro Preto, Brazil
  • Federal University of Ouro Preto, Brazil
Bibliografia
  • 1. Abdel-Azim, A.A. (1996) Unsaturated polyester resins from poly(ethylene terephthalate) waste for polymer concrete. Polymer Engineering & Science, 36, 2973-2977.
  • 2. Czarnecki, L. (2010) Betony polimerowe. Cement Wapno Beton, 2, 63-85.
  • 3. Dębska, B., & Brigolini Silva, G.J. (2021) Mechanical properties and microstructure of epoxy mortars made with polyethylene and poly(ethylene terephthalate) waste. Materials, 14(9), 2203, 1-18.
  • 4. Dębska, B., Lichołai, L. & Brigolini Silva, G.J. (2020) Effects of waste glass as aggregate on the properties of resin composites. Construction and Building Materials, 258, 1-11.
  • 5. Dębska, B., Lichołai, L. & Miąsik, P. (2018) Assessment of the applicability of sustainable epoxy composites containing waste rubber aggregates in buildings. Buildings, 9(2), 1-16.
  • 6. Dębska, B., Wojtaszek, K., Altoé Caetano, M. & Brigolini Silva, G.J. (2024) Sustainable polyester composites containing waste glass for building applications. Sustainability, 16(2), 719.
  • 7. Jin, N.J., Yeon, J., Seung, I. & Yeon, K-S. (2017) Effects of curing temperature and hardener type on the mechanical properties of bisphenol F-type epoxy resin concrete. Construction and Building Materials, 156, 933-943.
  • 8. Jørgensen, J.K. & Mikkelsen, L.P. (2024) Tailored cure profiles for simultaneous reduction of the cure time and shrinkage of an epoxy thermoset. Heliyon, 10(3), e25450.
  • 9. Jung, K., Roh, I. & Chang, S. (2014) Evaluation of mechanical properties of polymer concretes for the rapid repair of runways. Composites Part B: Engineering, 58, 352-360.
  • 10. Lorenz, N., Müller-Pabel, M., Gerritzen, J., Müller, J., Grӧger, B., Schneider, D., Fischer, K., Gude, M. & Hopmann, Ch. (2022) Characterization and modeling cure- and pressure-dependent thermo-mechanical and shrinkage behavior of fast curing epoxy resins. Polymer Testing, 108, 107498.
  • 11. Lv, J., Zhang, Y., Huang, J., Zhang, Q., Ma, X. & Guo, Y. (2023) Effects of waste rubber powder and resin content on the free shrinkage of polymer concrete. Construction and Building Materials, 381, 131307.
  • 12. Mahdi, F., Abbas, H. & Khan, A.A. (2010) Strength characteristics of polymer mortar and concrete using different compositions of resins derived from post-consumer PET bottles. Construction and Building Materials, 24, 25-36.
  • 13. Martínez-López, M., Martínez-Barrera, G., Salgado-Delgado, R. & Gencel O. (2021) Recycling polypropylene and polyethylene wastes in production of polyester based polymer mortars. Construction and Building Materials, 274, 121487.
  • 14. Nawab, Y., Tardif, X., Boyard, N., Sobotka, V., Casari, P. & Jacquemin, F. (2012) Determination and modelling of the cure shrinkage of epoxy vinylester resin and associated composites by considering thermal gradients. Composites Science and Technology, 73, 81-87.
  • 15. PN-EN 196-1: 2016-07 Cement Testing Methods — Part 1: Determination of Strength.
  • 16. Rajeshwar, B.K., Yemam, D.M., Jang, I. & Yi, Ch. (2020) The effects of sand washing waste and microwave curing on the dimensional stability of epoxy mortar. Construction and Building Materials, 250, 118892.
  • 17. Shahapurkar, K. (2021) Compressive behavior of crump rubber reinforced epoxy composites. Polymer Composites, 42, 329-341.
  • 18. Shahapurkar, K., Alblalaihid, K., Chenrayan, V., Alghtani, A.H., Tirth, V., Algahtani, A., Alarifi, I.M. & Kiran, M.C. (2022) Quasi-static flexural behavior of epoxy-matrix-reinforced crump rubber composites. Processes, 10(5), 956.
  • 19. Shahapurkar, K., Soudagar, M.E.M., Shahapurkar, P., Mathapathi, M., Khan, T.M.Y., Mujtaba, M.A., Ali, M.D.I., Thanaiah, K., Siddiqui, M.I.H. & Ali, M.A. (2022) Effect of crump rubber on the solid particle erosion response of epoxy composites. Journal of Applied Polymer Science, 139(2), e51470.
  • 20. Shen, Y., Huang, J., Ma, X., Hao, F. & Lv, J. (2020) Experimental study on the free shrinkage of lightweight polymer concrete incorporating waste rubber powder and ceramsite. Composite Structures, 242, 15, 112152.
  • 21. Shen, Y., Ma, X., Huang, J., Hao, F., Lv, J. & Shen, M. (2020) Near-zero restrained shrinkage polymer concrete incorporating ceramsite and waste rubber powder. Cement and Concrete Composites, 110, 103584.
  • 22. Shi-Cong, K. & Chi-Sun, P. (2013) A novel polymer concrete made with recycled glass aggregates, fly ash and metakaolin. Construction and Building Materials, 41, 146-151.
  • 23. Wang, J., Dai, Q., Guo, S. & Si, R. (2019) Mechanical and durability performance evaluation of crumb rubber-modified epoxy polymer concrete overlay. Construction and Building Materials, 203, 469-480.
Identyfikator YADDA
bwmeta1.element.baztech-3b1fb830-6162-4a60-9bb6-0973019a595a