Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The purpose of this article is to characterize and compare the structure, mechanical and tribological properties of low friction DLC and TiC thin films deposited on the austenitic steel X6CrNiMoTi17-12-2 substrate. Design/methodology/approach: In the research, the samples of the DLC and TiC thin films with transition hard AlCrN interlayer deposited by magnetron sputtering and PACVD technology respectively were used. Observations of topography were made using a scanning electron microscope (SEM), and the atomic force microscope (AFM). The structure of samples was performed using a Raman microscope. The microhardness tests of thin films were made by Oliver & Phare method. Findings: Studies confirmed that the combination of research SEM and AFM provide crucial information on the structure and topography of the samples. It was possible to obtain information about the topography parameters and allow for the assessment of morphology and quality of the tested coatings. Study of the structure using Raman spectroscopy revealed the band corresponding to the DLC and TiC thin films. Practical implications: The current application areas for low friction thin films are constantly growing, and the intensive development of techniques requires the use of new technologies what leads to the production of the specific surface layer and a thorough examination. Originality/value: Growing area of low friction coatings with specific properties requires the use of specialized tools aimed at assessing the topography and structures which are responsible for tribological properties.
Wydawca
Rocznik
Tom
Strony
21--25
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Department of Material Science and Technology, Faculty of Mechanical Engineering, University of West Bohemia in Pilsen, Czech Republic
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
- [1] N. Kumar, P.K. Ajikumar, S. Dash, M. Kamruddin, A.K. Tyagi, Baldev Raj, Ultra-low friction of TiC/a-C composite coatings, Tribology International 44 (2011) 1251-1256.
- [2] G. Rasool, S. Mridha, M.M. Stack, Mapping wear mechanisms of TiC/Ti composite coatings, Wear 328329 (2015) 498-508.
- [3] L. D’Alessio, A.M. Salvi, R. Teghil, V. Marotta, A. Santagata, B. Brunetti, D. Ferro, G. De Maria, Silicon supported TiC films produced by pulsed laser ablation, Applied Surface Science 134 (1998) 53-62.
- [4] A.A. El Mela, E. Gautron, F. Christien, B. Angleraud, A. Granier, P. Souček, P. Vašina, V. Buršíková, M. Takashima, N. Ohtake, H. Akasaka, T. Suzuki, P.Y. Tessier, Titanium carbide/carbon nanocomposite hard coatings, A comparative study between various chemical analysis tools. Surface and Coatings Technology 256 (2014) 41-46.
- [5] N. Oláh, Z. Fogarassy, A. Sulyok, J. Szívós, T. Csanádi, K. Balázsi, Ceramic TiC/a:C protective nanocomposite coatings, Structure and composition versus mechanical properties and tribology, Ceramics International 42 (2016) 12215-12220.
- [6] A. De Bonis, et al, Formation of Titanium Carbide (TiC) and TiC@C core-shell nanostructures by ultrashort laser ablation of titanium carbide and metallic titanium in liquid, Journal of Colloid and Interface Science (2016) DOI: 10.1016/j.jcis.2016.08.078.
- [7] M. Braic, N.C. Zoita, M. Danila, C.E.A Grigorescu, C. Logofatu, Hetero-epitaxial growth of TiC films on MgO(001) at 100°C by DC reactive magnetron sputtering, Thin Solid Films 589 (2015) 590-596.
- [8] B. Wang, Y. Liu, Y. Liu, Y. Jin-Wen, Mechanical properties and electronic structure of TiC, Ti0.75 W0.25C, Ti0.75W0.25C0.75N0.25, TiC0.75N0.25 and TiN, Physica B 407 (2012) 2542-2548.
- [9] G. Rasool, M.M. Stack, Wear maps for TiC composite based coatings deposited on 303 stainless steel, Tribology International 74 (2014) 93-102.
- [10] J. Haglund, G. Grimvall, Band structure and cohesive properties of 3d-transition-metal carbides and nitrides with the NaCl-type structure, Physical Review B 43 (1991) 14400-14408.
- [11] J. Robertson, Diamond-like amorphous carbon, Materials Science and Engineering 37 (2002) 127-281.
- [12] R. Crombez, J. McMinis, V.S. Veerasmamy, W. Shen, Experimental study of mechanical properties and scratch resistance of ultra-thin diamond-like-carbon (DLC) coatings deposited on glass, Tribology International 44 (2011) 55-62.
- [13] J. Vetter, 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications, Surface and Coatings Technology 257 (2014) 213-240.
- [14] Kai-Yu Peng, Da-Hua Wei, Chii-Ruey Lin, YuehChung Yu, Yeong-Der Yao, Hong-Ming Lin, Hydrophobic and high transparent honeycomb diamond-like carbon thin film fabricated by facile self-assembled nanosphere lithography, Japanese Journal of Applied Physics 53 (2014) 05FC02.
- [15] A. Gasco Owens, S. Brühl, S. Simison, C. Forsich, D. Heim, Comparison of Tribological Properties of Stainless Steel with Hard and Soft DLC Coatings, Procedia Materials Science 9 (2015) 246-253.
- [16] M. Jelinek, A. Voss, T. Kocourek, M. Mozafari, V. Vymĕtalová, M. Zezulová, P. Písařík, C. Popov, J. Mikšovský, Comparison of surface properties of DLC and ultrananocrystalline diamond films with respect to their bioapplications, Physica Status Solidi A 210 (2013) 2106-2110.
- [17] A. Vanhulsel, F. Velasco, R. Jacobs, L. Eerselsa, D. Havermans, E.W. Roberts, I. Sherrington, M.J. Anderson, L. Gaillard, DLC solid lubricant coatings on ball bearings for space applications, Tribology International 40 (2007) 1186-1194.
- [18] K. Lukaszowicz, A. Paradecka, Characteristics of diamond – like carbon (DLC) film deposited by PACVD process, Materials Engineering - Materiálové inžinierstvo (MEMI) 23 (2016) 132-137.
- [19] D. Kim, S. Kim, Characteristics of a direct negative carbon ion beam source and AFM observations of DLC film, Surface and Coatings Technology 151 (2002) 66-71.
- [20] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B 61 (2002) 14095-14107.
- [21] C. Casiraghi, F. Piazza, A.C. Ferrari, D. Grambole, J. Robertson, Bonding in hydrogenated diamond-like carbon by Raman spectroscopy, Diamond & Related Materials 14 (2005) 1098-1102.
- [22] D. Ozimina, M. Madej, J. Kowalczyk, J. Suchanek, F. Taticek, M. Kolariikova, Zużycie powłok diamentopodobnych w zależności od rodzaju kompozycji powłokowej i materiałów pary trącej, Tribologia 3 (2012) 127-136 (in Polish).
- [23] B.H. Lohse, A. Calka, D. Wexler, Raman spectroscopy as a tool to study TiC formation during controlled ball milling, Journal of Applied Physics 97 (2005) 114912-1-114912-7.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b163f6a-8ca3-4cf8-8e95-6951ebb1d382