Justyna MIŁEK, Marek WÓJCIK, Sylwia KWIATKOWSKA-MARKS, Ireneusz GRUBECKI

e-mail: jmilek@utp.edu.pl

Katedra Inżynierii Chemicznej i Bioprocesowej, Wydział Technologii i Inżynierii Chemicznej, Uniwersytet Technologiczno-Przyrodniczy, Bydgoszcz

Wpływ dezaktywacji termicznej oraz dezaktywacji substratem na rozkład nadtlenku wodoru przez komercyjną katalazę

Wstęp

Zastosowanie nadtlenku wodoru w procesach przemysłowych jako utleniacza związane jest zazwyczaj z koniecznością rozkładu jego pozostałości. Najczęściej do tego celu wykorzystuje się obecnie katalazę (EC 1.11.1.6). W przemyśle włókienniczym do usuwania pozostałości nadtlenku wodoru stosowany jest *Terminox Ultra* – katalaza komercyjna pochodzenia mikrobiologicznego, charakteryzująca się m.in. aktywnym działaniem w wysokiej temperaturze [*Kaasgard*, 2008]. Rozkład nadtlenku wodoru przez katalazę związany jest jednak z równolegle przebiegającą dezaktywacją enzymu. Enzym ulega zarówno dezaktywacji termicznej jak i dezaktywacji pod wpływem substratu.

Celem prezentowanej pracy była ocena znaczenia dezaktywacji termicznej na rozkład rozcieńczonych roztworów nadtlenku wodoru przez komercyjną katalazę Terminox Ultra.

Model bioreaktora okresowego do rozkładu nadtlenku wodoru przez katalazę

Przy formułowaniu modelu matematycznego bioreaktora przyjęto następujące założenia:

1. Dla niskich stężeń nadtlenku wodoru szybkość reakcji r_s opisuje równanie kinetyczne:

$$r_{\rm S} = k_{\rm R} \ C_{\rm E} \ C_{\rm S} \tag{1}$$

gdzie: k_R – stała szybkości reakcji [dm³/(mol·h)]; C_S – stężenie substratu [mol/ dm³]; C_E – stężenie enzymu [mol/dm³].

Równanie w tej postaci stosowali m.in. DeLuca i in. [1995] oraz Ghadermarzi i Moosavi-Movahedi [1996].

2. Dezaktywacja termiczna katalazy przebiega według jednostopniowego mechanizmu $E \rightarrow D$ [*Oancea i in., 2008;Cantemira i in., 2013*] prowadzącego do równania kinetycznego:

$$r_{DT} = k_{DT} C_{\rm E} \tag{2}$$

gdzie: k_{DT} – stała szybkości dezaktywacji termicznej [1/h].

 Kinetykę dezaktywacji katalazy substratem opisuje równanie pierwszego rzędu w odniesieniu do stężenia substratu oraz enzymu [Ghadermarzi i Moosavi-Movahedi, 1996; Costa i in., 2002, Fruhwirth i in, 2002]:

$$r_{DS} = k_{DS} C_E C_S \tag{3}$$

gdzie: k_{DS} – stała szybkości dezaktywacji nadtlenkiem wodoru, [dm³/(mol·h)].

Bilans masy substratu i aktywnej katalazy dla bioreaktora okresowego opisuje układ dwóch równań różniczkowych zwyczajnych:

$$\frac{dC_s}{dt} = -k_R C_E C_S \tag{4a}$$

$$\frac{dC_E}{dt} = -k_{DS} C_E C_S - k_{DT} C_E$$
(4b)

z warunkami początkowymi $C_S(t=0) = C_{S0}$ oraz $C_E(t=0) = C_{E0}$

Po wprowadzeniu aktywności bezwymiarowej $a = C_E/C_{E0}$ otrzymuje się układ równań o następującej postaci:

$$\frac{dC_s}{dt} = -k_R^* a C_s \tag{5a}$$

$$\frac{da}{dt} = -k_D \ a \ C_S - k_{DT} a \tag{5b}$$

z warunkami początkowymi $C_s(t=0) = C_{s0}$ oraz a(t=0) = 1, gdzie: $k_R^* = C_{E0}k_R$ [1/h].

Model matematyczny opisany równ. (5a) i (5b) można rozwiązać jedynie metodami numerycznymi. Do obliczeń niezbędna jest znajomość stałych kinetycznych.

Wyznaczanie stałych kinetycznych

W prezentowanej pracy wykorzystano wcześniejsze badania [*Miłek 2011*], które pozwoliły na identyfikację stałych kinetycznych. Stałą szybkości k_R^* wyznaczono na podstawie pomiarów spektrofotometrycznych rozkładu nadtlenku wodoru o stężeniu początkowym 0,015 mol/dm³. Zastosowanie bardzo wysokich stężeń katalazy pozwoliło skrócić czas rozkładu nadtlenku wodoru do jednej minuty. W takiej sytuacji dezaktywację termiczną oraz dezaktywację substratem można pominąć i bezpośrednio z szybkości rozkładu nadtlenku wodoru wyznaczyć stałą k_R^* . Dla badanego zakresu temperatur stała szybkości reakcji zmieniała się zgodnie z równaniem *Arrheniusa*. Wartość energii aktywacji E_R wynosi 11,6 kJ/mol. Jej niska wartość świadczy o niewielkim wpływie temperatury na szybkość reakcji rozkładu nadtlenku wodoru.

Stałą szybkości dezaktywacji termicznej k_{DT} wyznaczono podczas przetrzymywania katalazy przez 30 h w termostatowanej łaźni wodnej w temperaturach z zakresu od 35°C do 70°C. W określonych odstępach czasu pobierano próby roztworu katalazy. Aktywność enzymu oznaczano przy użyciu elektrody tlenowej [*Díaz i in., 2005; Hakala i in., 2006,*]. Zależność stałej szybkości dezaktywacji termicznej katalazy k_{DT} od temperatury przebiegała zgodnie z równaniem *Arrheniusa*, a energia aktywacji procesu dezaktywacji termicznej E_{DT} wynosi 140,93 kJ/mol, natomiast stała przedwykładnicza równa się 1,15·10²¹ h⁻¹.

Stałą szybkości dezaktywacji katalazy substratem k_{DS} wyznaczono na podstawie badań rozkładu nadtlenku wodoru w izotermicznym reaktorze okresowym. Proces rozkładu nadtlenku wodoru prowadzono przez okres 1,5 h w stałych temperaturach. W określonych odstępach czasu pobierano próbki roztworu reakcyjnego i oznaczano spektrofotometrycznie stężenie nadtlenku wodoru. Na podstawie wykonanych pomiarów zmiany stężenia nadtlenku wodoru wyznaczono stałą szybkości dezaktywacji k_{DS} . Przy identyfikacji tego parametru metodą najmniejszych kwadratów, wykorzystywano wcześniej wyznaczone niezależnie wartości stałej k_R^* . Zmiana stałej szybkości dezaktywacji k_{DS} z temperaturą przebiegała również zgodnie z równaniem *Arrheniusa* a energia dezaktywacji substratem E_{DS} wynosi 44,8 kJ/mol, natomiast stała przedwykładnicza szybkości dezaktywacji substratem równa się 8,06-10⁹ dm³/(mol·h).

Analiza pracy bioreaktora okresowego do rozkładu nadtlenku wodoru

Dysponując stałymi kinetycznymi (k_R^* , k_{DT} , i k_{DS}) oceniono wpływ dezaktywacji termicznej na rozkład nadtlenku wodoru. W tym celu wyznaczono rozwiązania układu równań (5a) i (5b) metodą *Rungego-Kutty* stosując program *Mathcad 15*. Obliczenia wykonano dla dwóch przypadków:

- brak wpływu dezaktywacji termicznej na aktywność katalazy tj. k_{DT} = 0
- dezaktywacja termiczna wpływa na aktywność katalazy tj. k_{DT}≠0.

Obliczenia wykonano dla temperatury 50°C, 60°C oraz 70°C i zakresu stężeń początkowych od 0,0015 do 0,015 mol/dm³. Rozpatrzono zastosowanie trzech stężeń katalazy, które prowadzą do trzech wartości stałych szybkości k_{R}^{*} różniących się miedzy sobą o 100%.

Przeprowadzone obliczenia zmiany stężenia nadtlenku wodoru pod wpływem działania katalazy wykazały, iż dezaktywacja termiczna praktycznie nie wpływa na przebieg zmian stężenia nadtlenku wodoru dla stężeń wyższych od 0,0015 mol/dm³. Dominuje wówczas dezaktywacja substratem.

Rys. 1. Zmiana stężenia nadtlenku wodoru 0,0015 mol/dm³ pod wpływem katalazy w temperaturze 50°C

Rys. 2. Zmiana stężenia nadtlenku wodoru 0,0015 mol/dm³ pod wpływem katalazy w temperaturze 60°C

Rys. 3. Zmiana stężenia nadtlenku wodoru 0,0015 mol/dm³ pod wpływem katalazy H₂O₂ w temperaturze 70°C

Dla stężeń nadtlenku wodoru niższych od 0,0015 mol/dm³ uwidacznia się pewien wpływ dezaktywacji termicznej na uzyskiwany rozkład nadtlenku wodoru. Zależy on w znacznym stopniu od temperatury prowadzenia procesu.

Na rys. 1-3 przedstawiono zmianę stężenia nadtlenku wodoru o stężeniu początkowym 0,0015 mol/dm³ w temperaturach 50°C, 60°C, 70°C . Na rys. 1 można zaobserwować jedynie niewielką zmianę stężenia nadtlenku wodoru po uwzględnieniu dezaktywacji termicznej. Z przebiegu krzywych na rys. 2 zauważa się, że już po 2 h rozkładu występuje widoczna różnica dla rozwiązań z uwzględnieniem dezaktywacji termicznej i bez jej uwzględniania. Różnica ta stopniowo wzrasta wraz z wydłużaniem czasu reakcji.

Dla rozkładu nadtlenku wodoru w temperaturze 70°C występują jeszcze większe różnice w końcowych stężeniach nadtlenku wodoru (Rys. 3).

Wnioski

Przeprowadzona analiza pracy bioreaktora do rozkładu nadtlenku wodoru przez komercyjną katalazę Terminox Ultra, która ulegała dezaktywacji termicznej oraz dezaktywacji pod pływem substratu pozwoliły na wyciągnięcie następujących wniosków:

- Dezaktywacja katalazy substratem dominuje w reakcji rozkładu nadtlenku wodoru o stężeniach początkowych wyższych od 0,0015 mol/dm³ a dezaktywacja termiczna może być pominięta.
- Dezaktywacja termiczna katalazy dominuje w rozkładzie nadtlenku wodoru o stężeniu początkowym niższym od 0,0015 mol/dm³. i jej wpływ jest tym większy im wyższa jest temperatura w której przebiega reakcja.

LITERATURA

- Cantemira A.R., Raducana A., Puiub M., Oancea, D., 2013. Kinetics of thermal inactivation of catalase in the presence of additives. *Proc. Biochem.* 48, 471-477. DOI: 10.1016/j.procbio.2013.02.013
- Costa S.A., Tzanov T., Carneiro A.F., Gübitz G.M., Cavaco-Paula A., 2002. Recycling of textile bleaching effluents for dyeing using immobilized catalase. *Biotechnol. Lett.* 24, 173-176. DOI: 10.1023/A:1014 136703369
- DeLuca D.C., Dennis R., Smith W.G., 1995. Inactivation of an animal a fungal catalase by hydrogen peroxide, *Arch. Biochem. Biophys.*, **320**, 129-134
- Díaz A., Muñoz-Clares R.A., Rangel P., Valdés V.J., Hansberg W., 2005 Functional and structural analysis of catalase oxidized by singlet oxygen. *Biochimie* 87, 205–214. DOI:10.1016/j.biochi.2004.10.014
- Fruhwirth G.O., Paar A., Gudelj M., Cavaco-Paulo A., Robra K.-H., Gübitz G.M., 2002. An immobilised catalase peroxidase from the alkalothermophilic *Bacillus SF* for the treatment of textile-bleaching effluents, *Appl. Microbiol. Biotechnol.*, **60**, 313-319. DOI 10.1007/s00253-002-1127-0
- Ghadermarzi M., Moosavi-Movahedi A.A., 1996. Determination of the kinetic parameters for the "suicide substrate" inactivation of bovine liver catalase by hydrogen peroxide. J. Enz. Inhib., 10, 167-175
- Hakala M., Rantamaki S., Puputti E.M., Tyystjarvi T., Tyystjarvi E., 2006. Photoinhibition of manganese enzymes: insights into the mechanism of photosystem II photoinhibition, *J. Exp. Bot.* 57, 1809–1816. DOI: 10.1093/jxb/erj189
- Kaasgard S., 2008. Enzyme stabilization in liquid detergents. EP 1 718 724 B1
- Miłek J, 2011. Badanie i modelowanie procesau dezaktywacji katalazy. Praca doktorska, ZUT Szczecin
- Miłek J., Wójcik M., 2011. Effect of temperature on the decomposition of hydrogen peroxide by catalase Terminox Ultra. *Przem. Chem.* 90, nr 6, 1260-1263
- Miłek J., Wójcik M., Verschelde W., 2014. Thermal stability for effective use of commercial catalase. *Pol. J. Chem. Technol.* 16, nr 4, 75-79. DOI:10.2478/pjct-2014-0073
- Oancea D., Stuparu A., Nita M., Puiu M., Raducan A., 2008. Estimation of the overall kinetic parameters of enzyme inactivation using an isoconversional method. *Biophys. Chem.* 138, 50–54. DOI: 10.1016/ j.bpc.2008.09.003