PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Whey Valorization – Innovative Strategies for Sustainable Development and Value-Added Product Creation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, the pursuit of sustainable practices and the efficient utilization of resources has become paramount in various industries, including the food and beverage sector. One such challenge faced by the dairy industry is the management of whey, a byproduct generated during cheese and yogurt production. Historically, whey has been perceived as a discarded waste product, leading to environmental concerns due to its high organic load and disposal challenges. However, with the increasing emphasis on sustainability, researchers and industry leaders have recognized the potential of developing innovative approaches to valorize whey, transforming it into valuable products while minimizing waste and environmental impact. Essentially turning it from “gutter-to-gold. This review provides an overview of the technologies used for whey valorization, with a focus on new approaches, innovative products, and emerging perspectives. It aims to stimulate research and innovation in this critical field, fostering the development of a more sustainable and circular dairy industry.
Rocznik
Strony
86--104
Opis fizyczny
Bibliogr. 122 poz., rys., tab.
Twórcy
  • Functional Ecology and Environmental Engineering Laboratory, Faculty of Sciences and Techniques, Sidi Mohamed Benabdellah University, Fez, Morocco
autor
  • Functional Ecology and Environmental Engineering Laboratory, Faculty of Sciences and Techniques, Sidi Mohamed Benabdellah University, Fez, Morocco
  • Functional Ecology and Environmental Engineering Laboratory, Faculty of Sciences and Techniques, Sidi Mohamed Benabdellah University, Fez, Morocco
  • Functional Ecology and Environmental Engineering Laboratory, Faculty of Sciences and Techniques, Sidi Mohamed Benabdellah University, Fez, Morocco
Bibliografia
  • 1. Abella, M., Leano, M., Malig, J., Martin, G., Cruz, C., de Leon, A. 2016. Formulation of a Sports Drink from Fermented Whey. CLSU International Journal of Science and Technology, 1(1), 1–10. https://doi.org/10.22137/ijst.2016.v1n1.01
  • 2. Aider, M., Gimenez-Vidal, M. 2012. Lactulose synthesis by electro-isomerization of lactose: Effect of lactose concentration and electric current density. Innovative Food Science & Emerging Technologies, 16, 163–170. https://doi.org/10.1016/j.ifset.2012.05.007
  • 3. Akib, M.A., Setiawati, H. 2017. Fermentation of Whey Waste as Organic Liquid Fertilizer “PUCAFU.” Agrotech Journal, 2(2), 7–13. https://doi.org/10.31327/atj.v2i2.277
  • 4. Anand, S., Som Nath, K., Chenchaiah, M. 2013. Whey and Whey Products. Milk and Dairy Products in Human Nutrition, 477–497. https://doi.org/10.1002/9781118534168.ch22
  • 5. Asunis, F., De Gioannis, G., Dessì, P., Isipato, M., Lens, P.N.L., Muntoni, A., Polettini, A., Pomi, R., Rossi, A., Spiga, D. 2020. The dairy biorefinery: Integrating treatment processes for cheese whey valorisation. Journal of Environmental Management, 276(2020), 111240. https://doi.org/10.1016/j.jenvman.2020.111240
  • 6. Asunis, F., De Gioannis, G., Francini, G., Lombardi, L., Muntoni, A., Polettini, A., Pomi, R., Rossi, A., Spiga, D. 2021. Environmental life cycle assessment of polyhydroxyalkanoates production from cheese whey. Waste Management, 132, 31–43. https://doi.org/10.1016/j.wasman.2021.07.010
  • 7. Berlutti, F., Pantanella, F., Natalizi, T., Frioni, A., Paesano, R., Polimeni, A., Valenti, P. 2011. Antiviral Properties of Lactoferrin—A Natural Immunity Molecule. Molecules, 16(8), 6992–7018. https://doi.org/10.3390/molecules16086992
  • 8. Bintsis, T., Papademas, P. 2023. Sustainable Approaches in Whey Cheese Production: A Review. Dairy, 4(2), 249–270. https://doi.org/10.3390/dairy4020018
  • 9. Boey, J.Y., Mohamad, L., Khok, Y.S., Tay, G.S., Baidurah, S. 2021. A Review of the Applications and Biodegradation of Polyhydroxyalkanoates and Poly (lactic acid) and Its Composites. Polymers, 13(10), 1544. https://doi.org/10.3390/polym13101544
  • 10. Bosco, F., Chiampo, F. 2010. Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy waste water activated sludge. Journal of Bioscience and Bioengineering, 109(4), 418–421. https://doi.org/10.1016/j.jbiosc.2009.10.012
  • 11. Božanić, R., Barukčić, I., Lisak Jakopović, K., Tratnik, L. 2014. Possibilities of Whey Utilisation. Austin Journal of Nutrition and Food Science, 2(7), 7.
  • 12. Brew, K. 2011. Milk Proteins | α-Lactalbumin.Encyclopedia of Dairy Sciences, 780–786. https://doi.org/10.1016/B978-0-12-374407-4.00432-5
  • 13. Buchanan, D., Martindale, W., Romeih, E., Hebishy, E. 2023. Review: Recent advances in whey processing and valorisation: Technological and environmental perspectives. International Journal of Dairy Technology, 76(2), 291–312. https://doi.org/10.1111/1471-0307.12935
  • 14. Chalermthai, B., Giwa, A., Schmidt, J.E., Taher, H. 2021. Life cycle assessment of bioplastic production from whey protein obtained from dairy residues. Bioresource Technology Reports, 15, 100695. https://doi.org/10.1016/j.biteb.2021.100695
  • 15. Chavan, R., Kumar, A. 2015. Whey Based Beverage: Its Functionality, Formulations, Health Benefits and Applications. Food Processing & Technology, 6(10), 1. https://doi.org/10.4172/2157-7110.1000495
  • 16. Christensen, A.D., Kádár, Z., Oleskowicz-Popiel, P., Thomsen, M.H. 2011. Production of bioethanol from organic whey using Kluyveromyces marxianus. Journal of Industrial Microbiology & Biotechnology, 38(2), 283–289. https://doi.org/10.1007/s10295-010-0771-0
  • 17. Chwialkowska, J., Duber, A., Zagrodnik, R., Walkiewicz, F., Łężyk, M., Oleskowicz-Popiel, P. 2019. Caproic acid production from acid whey via open culture fermentation – Evaluation of the role of electron donors and downstream processing. Bioresource Technology, 279, 74–83. https://doi.org/10.1016/j.biortech.2019.01.086
  • 18. Córdova-Dávalos, L., Jiménez, M., Salinas, E. 2019. Review Glycomacropeptide Bioactivity and Health: A Review Highlighting Action Mechanisms and Signaling Pathways. Nutrients, 11(3), 598. https://doi.org/10.3390/nu11030598
  • 19. Costa, M.A., Kuhn, D., Rama, G.R., Lehn, D.N., Souza, C.F.V.D. 2022. Whey butter: a promising perspective for the dairy industry. Brazilian Journal of Food Technology, 25, e2021088. https://doi.org/10.1590/1981-6723.08821
  • 20. Das, M., Raychaudhuri, A., Ghosh, S.K. 2016. Supply Chain of Bioethanol Production from Whey: A Review. Procedia Environmental Sciences, 35, 833–846. https://doi.org/10.1016/j.proenv.2016.07.100
  • 21. De La Fuente, M.A., Hemar, Y., Tamehana, M., Munro, P.A., Singh, H. 2002. Process-induced changes in whey proteins during the manufacture of whey protein concentrates. International Dairy Journal, 12(4), 361–369. https://doi.org/10.1016/S0958-6946(02)00031-6
  • 22. Deeth, H., Bansal, N. 2019. Whey Proteins an Overview. Whey Proteins, 1–50. https://doi.org/10.1016/B978-0-12-812124-5.00001-1
  • 23. Dinika, I., Verma, D.K., Balia, R., Utama, G.L., Patel, A.R. 2020. Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: A review of recent trends. Trends in Food Science & Technology, 103, 57–67. https://doi.org/10.1016/j.tifs.2020.06.017
  • 24. Dullius, A., Goettert, M.I., De Souza, C.F.V. 2018. Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. Journal of Functional Foods, 42, 58–74. https://doi.org/10.1016/j.jff.2017.12.063
  • 25. Espinosa-Gonzalez, I., Parashar, A., Bressler, D.C.2014. Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresource Technology, 155, 170–176. https://doi.org/10.1016/j.biortech.2013.12.028
  • 26. FAO.2017. The future of food and agriculture – Trends and challenges. Rome, Italy
  • 27. Ferreira, M.V.S., Cappato, L.P., Silva, R., Rocha, R.S., Guimarães, J.T., Balthazar, C.F., Esmerino, E.A., Freitas, M.Q., Rodrigues, F.N., Granato, D., Neto, R.P.C., Tavares, M.I.B., Silva, P.H.F., Raices, R.S.L., Silva, M.C., Cruz, A.G. 2019. Ohmic heat-=ing for processing of whey-raspberry flavored beverage. Food Chemistry, 297, 125018. https://doi.org/10.1016/j.foodchem.2019.125018
  • 28. Fonseca, D.P., Khalil, N.M., Mainardes, R.M. 2017. Bovine serum albumin-based nanoparticles containing resveratrol: Characterization and antioxidant activity. Journal of Drug Delivery Science and Technology, 39, 147–155. https://doi.org/10.1016/j.jddst.2017.03.017
  • 29. García-Garibay, M., Jiménez-Guzmán, J., Hernández-Sánchez, H. 2008. Whey Proteins: Bioengineering and Health. Food Engineering: Integrated Approaches, 415–430. https://doi.org/10.1007/978-0-387-75430-7_31
  • 30. Gösta Bylund, M.Sc. 2015. Whey Processing - Dairy Processing Handbook-Tetra Pak. Sweden
  • 31. Guo, M. 2019. Whey Protein Production, Chemistry, Functionality, and Applications. Department of Nutrition and food Sciences, The University of Vermont Burlinfton, USA.
  • 32. Guo, M. 2014. Chemical composition of human milk. Human Milk Biochemistry and Infant Formula Manufacturing Technology, 19–32. https://doi.org/10.1533/9780857099150.1.19
  • 33. Guo, M., Wang, G. 2019. History of Whey Production and Whey Protein Manufacturing. Whey Protein Production, Chemistry, Functionality, and Applications,1–12 https://doi.org/10.1002/9781119256052.ch1
  • 34. Hallgren, O., Aits, S., Brest, P., Gustafsson, L., Mossberg, A.-K., Wullt, B., Svanborg, C. 2008. Apoptosis and Tumor Cell Death in Response to HAMLET (Human α-Lactalbumin Made Lethal to Tumor Cells). Bioactive Components of Milk, Advances in Experimental Medicine and Biology, 217–240. https://doi.org/10.1007/978-0-387-74087-4_8
  • 35. Hasmukh Patel, Sonia Patel. 2015. Technical Report: Understanding the Role of Dairy Proteins in Product Performance .Dairy Export Council, USA.
  • 36. Heinrichs, A.J., Elizondo-Salazar, J.A. 2009. Reducing Failure of Passive Immunoglobulin Transfer in Dairy Calves. Revue de Medecine Veterinaire, 160(8-9) ,436-440.
  • 37. Henriques, M., Gomes, D., Rodrigues, D., Pereira, C., Gil, M.2011. Performance of Bovine and Ovine Liquid Whey Protein Concentrate on Functional Properties of Set Yoghurts. Procedia Food Science, 1, 2007–2014. https://doi.org/10.1016/j.profoo.2011.10.001
  • 38. Hernández-Ledesma, B., Ramos, M., Gómez-Ruiz, J.Á. 2011. Bioactive components of ovine and caprine cheese whey. Small Ruminant Research, 101(1-3), 196–204. https://doi.org/10.1016/j.smallrumres.2011.09.040
  • 39. Higgins, J.P., Tuttle, T.D., Higgins, C.L. 2010. Energy Beverages: Content and Safety. Mayo Clinic Proceedings, 85(11), 1033–1041. https://doi.org/10.4065/mcp.2010.0381
  • 40. Hulmi, J.J., Lockwood, C.M., Stout, J.R. 2010. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutrition & Metabolism, 7(1), 1-11. https://doi.org/10.1186/1743-7075-7-51
  • 41. Janet R. Ling. 2007. Dietary Protein Research Trends. Nova Publishers, New York.
  • 42. Jauregui-Rincón, J., Salinas-Miralles, E., Chávez-Vela, N., Jiménez-Vargas, M. 2019. Glycomacropeptide: Biological Activities and Uses. Whey - Biological Properties and Alternative Uses. https://doi.org/10.5772/intechopen.82144
  • 43. Jeewanthi, R.K.C., Lee, N.-K., Paik, H.-D. 2015. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry. Korean Journal for Food Science of Animal Resources, 35(3), 350–359. https://doi.org/10.5851/kosfa.2015.35.3.350
  • 44. Jinjarak, S., Olabi, A., Jiménez-Flores, R., Walker, J.H. 2006. Sensory, Functional, and Analytical Comparisons of Whey Butter with Other Butters. Journal of Dairy Science, 89(7), 2428–2440. https://doi.org/10.3168/jds.S0022-0302(06)72316-5
  • 45. Joshi, J., Gururani, P., Vishnoi, S., Srivastava, A.2020. Whey Based Beverages: A Review. Octa Journal of Biosciences, 8(1), 30-37.
  • 46. Jungbauer, A., Hahn, R. 2009. Ion-Exchange Chromatography. Methods in Enzymology, 349–371. https://doi.org/10.1016/S0076-6879(09)63022-6
  • 47. Jurado, E., Camacho, F., Luzón, G., Vicaria, J.M. 2002. A new kinetic model proposed for enzymatic hydrolysis of lactose by a β-galactosidase from Kluyveromyces fragilis. Enzyme and Microbial Technology, 31(3), 300–309. https://doi.org/10.1016/S0141-0229(02)00107-2
  • 48. Jyotsna, R., Sai Manohar, R., Indrani, D., Venkateswara Rao, G. 2007. Effect of Whey Protein Concentrate on the Rheological and Baking Properties of Eggless Cake. International Journal of Food Properties, 10(3), 599–606. https://doi.org/10.1080/10942910601048986
  • 49. Kadam, B., Ambadkar, R., Rathod, K., Landge, S. 2018. Health Benefits of Whey: A Brief Review. International Journal of Livestock Research, 8(5), 31-49. https://doi.org/10.5455/ijlr.20170411022323
  • 50. Kareb, O., Champagne, C.P., Jean, J., Gomaa, A., Aïder, M. 2018. Effect of electro-activated sweet whey on growth of Bifidobacterium, Lactobacillus, and Streptococcus strains under model growth conditions. Food Research International, 103, 316–325. https://doi.org/10.1016/j.foodres.2017.10.060
  • 51. Karim, A., Aider, M. 2020. Sustainable Valorization of Whey by Electroactivation Technology for In Situ Isomerization of Lactose into Lactulose: Comparison between Electroactivation and Chemical Processes at Equivalent Solution Alkalinity. ACS Omega, 5(14), 8380–8392. https://doi.org/10.1021/acsomega.0c00913
  • 52. Kaur, R., Panwar, D., Panesar, P.S. 2020. Biotechnological approach for valorization of whey for value-added products. Food Industry Wastes, 275–302. https://doi.org/10.1016/B978-0-12-817121-9.00013-9
  • 53. Khaire, R.A., Gogate, P.R. 2018. Intensified recovery of lactose from whey using thermal, ultrasonic and thermosonication pretreatments. Journal of Food Engineering, 237, 240–248. https://doi.org/10.1016/j.jfoodeng.2018.04.027
  • 54. Kosseva, M.R., Kent, C.A., Lloyd, D.R. 2003. Thermophilic bioremediation strategies for a dairy waste. Biochemical Engineering Journal, 15(2), 125–130. https://doi.org/10.1016/S1369-703X(02)00193-6
  • 55. Lappa, I., Papadaki, A., Kachrimanidou, V., Terpou, A., Koulougliotis, D., Eriotou, E., Kopsahelis, N. 2019. Cheese whey processing: integrated biorefinery concepts and emerging food applications. Foods, 8(8), 347. https://doi.org/10.3390/foods8080347
  • 56. Llamas-Unzueta, R., Menéndez, J.A., Suárez, M., Fernández, A., Montes-Morán, M.A. 2022. From whey robocasting to custom 3D porous carbons. Additive Manufacturing, 59, 103083. https://doi.org/10.1016/j.addma.2022.103083
  • 57. Loperena, L., Ferrari, M.D., Díaz, A.L., Ingold, G., Pérez, L.V., Carvallo, F., Travers, D., Menes, R.J., Lareo, C. 2009. Isolation and selection of native microorganisms for the aerobic treatment of simulated dairy wastewaters. Bioresource Technology, 100(5), 1762–1766. https://doi.org/10.1016/j.biortech.2008.09.056
  • 58. Macwan, S.R., Dabhi, B.K., Parmar, S.C., Aparnathi, K.D. 2016. Whey and its utilization. International Journal of Current Microbiology and Applied Sciences, 5(8), 134–155. https://doi.org/10.20546/ijcmas.2016.508.016
  • 59. Madureira, A.R., Tavares, T., Gomes, A.M.P., Pintado, M.E., Malcata, F.X. 2010. Invited review: Physiological properties of bioactive peptides obtained from whey proteins. Journal of Dairy Science, 93(2), 437–455. https://doi.org/10.3168/jds.2009-2566
  • 60. Magalhães, K.T., Dias, D.R., De Melo Pereira, G.V., Oliveira, J.M., Domingues, L., Teixeira, J.A., De Almeida E Silva, J.B., Schwan, R.F. 2011. Chemical composition and sensory analysis of cheese whey-based beverages using kefir grains as starter culture: Chemical and sensory analysis of CW-based kefir beverages. International Journal of Food Science and Technology, 46(4), 871–878. https://doi.org/10.1111/j.1365-2621.2011.02570.x
  • 61. Mahdi, L., Mahdi, N., Al-kakei, S., Musafer, H., Al-Joofy, I., Essa, R., Zwain, L., Salman, I., Mater, H., Al-Alak, S., Al-Oqaili, R. 2018. Treatment strategy by lactoperoxidase and lactoferrin combination: Immunomodulatory and antibacterial activity against multidrug-resistant Acinetobacter baumannii. Microbial Pathogenesis, 114, 147–152. https://doi.org/10.1016/j.micpath.2017.10.056
  • 62. Marx, M., Bernauer, S., Kulozik, U. 2018. Manufacturing of reverse osmosis whey concentrates with extended shelf life and high protein nativity. International Dairy Journal, 86, 57–64. https://doi.org/10.1016/j.idairyj.2018.06.019
  • 63. Mehra, R., Kumar, H., Kumar, N., Ranvir, S., Jana, A., Buttar, H.S., Telessy, I.G., Awuchi, C.G., Okpala, C.O.R., Korzeniowska, M., Guiné, R.P.F. 2021. Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. Journal of Functional Foods, 87, 104760. https://doi.org/10.1016/j.jff.2021.104760
  • 64. Meng, Y., Liang, Z., Zhang, C., Hao, S., Han, H., Du, P., Li, A., Shao, H., Li, C., Liu, L. 2021. Ultrasonic modification of whey protein isolate: Implications for the structural and functional properties. LWT-Food Science and technology, 152, 112272. https://doi.org/10.1016/j.lwt.2021.112272
  • 65. Minj, S., Anand, S. 2020. Whey Proteins and Its Derivatives: Bioactivity, Functionality, and Current Applications. Dairy, 1(3), 233–258. https://doi.org/10.3390/dairy1030016
  • 66. Modler, H.W. 1988. Development of a Continuous Process for the Production of Ricotta Cheese. Journal of Dairy Science, 71(8), 2003–2009. https://doi.org/10.3168/jds.S0022-0302(88)79775-1
  • 67. Mollea, C., Marmo, L., Bosco, F. 2013. Valorisation of Cheese Whey, a By-Product from the Dairy Industry. Food Industry. https://doi.org/10.5772/53159
  • 68. Monnier, L., Schlienger, J.-L. 2018. Whey Processing, Functionality and Health Benefits. Elsevier Health Sciences, USA.
  • 69. Montané, X., Montornes, J.M., Nogalska, A., Olkiewicz, M., Giamberini, M., Garcia-Valls, R., Badia-Fabregat, M., Jubany, I., Tylkowski, B. 2020. Synthesis and synthetic mechanism of Polylactic acid. Physical Sciences Reviews,5(12) 20190102. https://doi.org/10.1515/psr-2019-0102
  • 70. Mulcahy, Eve M. 2017. Preparation, characterisation and functional applications of whey protein- carbohydrate conjugates as food ingredients. PhD Thesis, University College Cork, Ireland. https://hdl.handle.net/10468/4007
  • 71. Olakanmi, O., Rasmussen, G.T., Lewis, T.S., Stokes, J.B., Kemp, J.D., Britigan, B.E. 2002. Multivalent Metal-Induced Iron Acquisition from Transferrin and Lactoferrin by Myeloid Cells. The Journal of Immunology, 169(4), 2076–2084. https://doi.org/10.4049/jimmunol.169.4.2076
  • 72. Olano, A., Corzo, N. 2009. Lactulose as a food ingredient: Lactulose as a food ingredient. Journal of the Science of Food and Agriculture, 89(12), 1987–1990. https://doi.org/10.1002/jsfa.3694
  • 73. Olmo, A.D., Morales, P., Nuñez, M. 2009. Bactericidal Activity of Lactoferrin and Its Amidated and Pepsin-Digested Derivatives against Pseudomonas fluorescens in Ground Beef and Meat Fractions. Journal of Food Protection, 72(4), 760–765. https://doi.org/10.4315/0362-028X-72.4.760
  • 74. Otles, S., Cagindi, O. 2012. Safety Considerations of Nutraceuticals and Functional Foods. Novel Technologies in Food Science their impact on products, consumer trends and the environment, 121–136. https://doi.org/10.1007/978-1-4419-7880-6_5
  • 75. Özer, B.H., Kirmaci, H.A. 2010. Functional milks and dairy beverages. International Journal of Dairy Technology, 63(1), 1–15. https://doi.org/10.1111/j.1471-0307.2009.00547.x
  • 76. Panghal, A., Patidar, R., Jaglan, S., Chhikara, N., Khatkar, S.K., Gat, Y., Sindhu, N. 2018. Whey valorization: current options and future scenario – a critical review. Nutrition & Food Science, 48(3), 520–535. https://doi.org/10.1108/NFS-01-2018-0017
  • 77. Papademas, P., Kotsaki, P. 2020. Technological Utilization of Whey towards Sustainable Exploitation. Advances in Dairy Research, 7 (4), 231. https://doi.org/10.35248/2329-888X.19.7.231
  • 78. Parrondo, J., Herrero, M., García, L.A., Díaz, M. 2003. A Note - Production of Vinegar from Whey. Journal of the Institute of Brewing, 109(4), 356–358. https://doi.org/10.1002/j.2050-0416.2003.tb00610.x
  • 79. Pereira, C., Henriques, M., Gomes, D., Gomez-Zavaglia, A., De Antoni, G. 2015. Novel functional whey-based drinks with great potential in the dairy industry. Food Technology and Biotechnology, 53(3), 307–314. https://doi.org/10.17113/ftb.53.03.15.4043
  • 80. Pires, A.F., Marnotes, N.G., Rubio, O.D., Garcia, A.C., Pereira, C.D. 2021. Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods, 10(5), 1067. https://doi.org/10.3390/foods10051067
  • 81. Písecký, J. 2005. Spray drying in the cheese industry. International Dairy Journal, 15(6-9), 531–536. https://doi.org/10.1016/j.idairyj.2004.11.010
  • 82. Porwal, H.J., Mane, A.V., Velhal, S.G. 2015. Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Resources and Industry, 9, 1–15. https://doi.org/10.1016/j.wri.2014.11.002
  • 83. Prazeres, A.R., Carvalho, F., Rivas, J. 2012. Cheese whey management: A review. Journal of Environmental Management, 110, 48–68. https://doi.org/10.1016/j.jenvman.2012.05.018
  • 84. Punnagaiarasi, A., Elango, A., Rajarajan, G., Prakash, S. 2017. Application of Bioremediation on Food Waste Management for Cleaner Environment. Bioremediation and Sustainable Technologies for Cleaner Environment, 51–56. https://doi.org/10.1007/978-3-319-48439-6_5
  • 85. Rama, G.R., Kuhn, D., Beux, S., Maciel, M.J., Volken De Souza, C.F. 2019. Potential applications of dairy whey for the production of lactic acid bacteria cultures. International Dairy Journal, 98, 25–37. https://doi.org/10.1016/j.idairyj.2019.06.012
  • 86. Ramos, O.L., Pereira, R.N., Rodrigues, R.M., Teixeira, J.A., Vicente, A.A., Malcata, F.X. 2016. Whey and Whey Powders: Production and Uses. Encyclopedia of Food and Health, 498–505. https://doi.org/10.1016/B978-0-12-384947-2.00747-9
  • 87. Reddy, C.S.K., Ghai, R., Rashmi, Kalia, V.C. 2003. Polyhydroxyalkanoates: an overview. Bioresource Technology, 87(2), 137–146. https://doi.org/10.1016/S0960-8524(02)00212-2
  • 88. Rocha-Mendoza, D., Kosmerl, E., Krentz, A., Zhang, L., Badiger, S., Miyagusuku-Cruzado, G., Mayta-Apaza, A., Giusti, M., Jiménez-Flores, R., García-Cano, I. 2021. Invited review: Acid whey trends and health benefits. Journal of Dairy Science, 104(2), 1262–1275. https://doi.org/10.3168/jds.2020-19038
  • 89. Rosenheim, H., De, I., Hyvedemm, S. 2018. Report European Bioplastics: Bioplastics market data 2018 Global production capacities of bioplastics 2018-2023.Nova institute, Berlin.
  • 90. Roy, B.D. 2008. Milk: the new sports drink? A Review. Journal of the International Society of Sports Nutrition, 5(1), 15. https://doi.org/10.1186/1550-2783-5-15
  • 91. Rutherfurd, K.J., Gill, H.S. 2000. Peptides affecting coagulation. British Journal of Nutrition, 84(S1), 99-102 https://doi.org/10.1017/S0007114500002312
  • 92. Ryan, M.P., Walsh, G. 2016. The biotechnological potential of whey. Reviews in Environmental Science and Bio/Technology, 15, 479–498. https://doi.org/10.1007/s11157-016-9402-1
  • 93. Saleh, H.E.-D.M. 2012. Polyester. InTech, Croatia
  • 94. Sansonetti, S., Curcio, S., Calabrò, V., Iorio, G. 2009. Bio-ethanol production by fermentation of ricotta cheese whey as an effective alternative non-vegetable source. Biomass and Bioenergy, 33(12), 1687–1692. https://doi.org/10.1016/j.biombioe.2009.09.002
  • 95. Sarkar, S., Gupta, S., Shaw, A.K. 2023. Emerging Technology and Management Trends in Environment and Sustainability: Proceedings of the International Conference, EMTES-2022. Taylor & Francis, Abingdon.
  • 96. Severin, S., Xia, W.S. 2006. Enzymatic Hydrolysis of Whey Proteins by two different proteases and their effect on the functional properties of resulting protein hydrolysates. Journal of Food Biochemistry, 30(1), 77–97. https://doi.org/10.1111/j.1745-4514.2005.00048.x
  • 97. Sharma, K., Chauhan, E.S. 2018. Role of Whey Protein in Nutrition, Health and Diseases: A Non Conventional Foodstuff with Amazing Nutraceutical Potential. IJRAR- International Journal of Research and Analytical Reviews, 5(3).464y-470y.
  • 98. Sharma, R. 2019. Whey Proteins in Functional Foods. Whey Proteins, 637–663. https://doi.org/10.1016/B978-0-12-812124-5.00018-7
  • 99. Shin, K., Wakabayashi, H., Yamauchi, K., Teraguchi, S., Tamura, Y., Kurokawa, M., Shiraki, K. 2005. Effects of orally administered bovine lactoferrin and lactoperoxidase on influenza virus infection in mice. Journal of Medical Microbiology, 54(8), 717–723. https://doi.org/10.1099/jmm.0.46018-0
  • 100. Shraddha Rc, C.R., Nalawade T, K.A. 2015. Whey Based Beverage: Its Functionality, Formulations, Health Benefits and Applications. Journal of Food Processing & Technology, 6(10) 1000495. https://doi.org/10.4172/2157-7110.1000495
  • 101. Silveira, M.R., Coutinho, N.M., Esmerino, E.A., Moraes, J., Fernandes, L.M., Pimentel, T.C., Freitas, M.Q., Silva, M.C., Raices, R.S.L., Senaka Ranadheera, C., Borges, F.O., Neto, R.P.C., Tavares, M.I.B., Fernandes, F.A.N., Fonteles, T.V., Nazzaro, F., Rodrigues, S., Cruz, A.G. 2019. Guava-flavored whey beverage processed by cold plasma technology: Bioactive compounds, fatty acid profile and volatile compounds. Food Chemistry, 279, 120–127. https://doi.org/10.1016/j.foodchem.2018.11.128
  • 102. Sinha, R., Radha, C., Prakash, J., Kaul, P. 2007. Whey protein hydrolysate: Functional properties, nutritional quality and utilization in beverage formulation. Food Chemistry, 101(4), 1484–1491. https://doi.org/10.1016/j.foodchem.2006.04.021
  • 103. Skryplonek, K. 2018. The use of acid whey for the production of yogurt-type fermented beverages. Hrvatska mljekarska udruga, 68(2), 139–149. https://doi.org/10.15567/mljekarstvo.2018.0207
  • 104. Smithers, G.W. 2008. Whey and whey proteins—from ‘gutter-to-gold.’ International Dairy Journal, 18(7), 695–704. https://doi.org/10.1016/j.idairyj.2008.03.008
  • 105. Souza, F.P., Balthazar, C.F., Guimarães, J.T., Pimentel, T.C., Esmerino, E.A., Freitas, M.Q., Raices, R.S.L., Silva, M.C., Cruz, A.G. 2019. The addition of xyloligoosaccharide in strawberry-flavored whey beverage. LWT - Food Science and Technology, 109, 118–122. https://doi.org/10.1016/j.lwt.2019.03.093
  • 106. SreedharanNair, S., Unni, K.K., Sasidharanpillai, S., Kumar, S., Aravindakumar, C.T., Aravind, U.K. 2022. Bio-physical and computational studies on serum albumin / target protein binding of a potential anti-cancer agent. European Journal of Pharmaceutical Sciences, 172, 106141. https://doi.org/10.1016/j.ejps.2022.106141
  • 107. Steve Taylor. 2009. Advances in Food and Nutrition Research. Department of food science, Valencia, Spain.
  • 108. Sustainable Development. 2015. General Assembly. Transforming our world: the 2030 Agenda for Sustainable Development. United Nations. https://sdgs.un.org/
  • 109. Teixeira, F.J., Santos, H.O., Howell, S.L., Pimentel, G.D. 2019. Whey protein in cancer therapy: A narrative review. Pharmacological Research, 144, 245–256. https://doi.org/10.1016/j.phrs.2019.04.019
  • 110. Tsermoula, P., Khakimov, B., Nielsen, J.H., Engelsen, S.B. 2021. Whey - The waste-stream that became more valuable than the food product. Trends in Food Science & Technology, 118, 230–241. https://doi.org/10.1016/j.tifs.2021.08.025
  • 111. Valenti, P., Antonini, G. 2005. Lactoferrin: Lactoferrin: an important host defence against microbial and viral attack. Cellular and Molecular Life Sciences, 62(22), 2576–2587. https://doi.org/10.1007/s00018-005-5372-0
  • 112. Valta, K., Damala, P., Angeli, E., Antonopoulou, G., Malamis, D., Haralambous, K.J. 2017. Current Treatment Technologies of Cheese Whey and Wastewater by Greek Cheese Manufacturing Units and Potential Valorisation Opportunities. Waste Biomass Valorization, 8(5), 1649–1663. https://doi.org/10.1007/s12649-017-9862-8
  • 113. Volpi, E., Kobayashi, H., Sheffield-Moore, M., Mittendorfer, B., Wolfe, R.R. 2003. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. The American Journal of Clinical Nutrition, 78(2), 250–258. https://doi.org/10.1093/ajcn/78.2.250
  • 114. Wakabayashi, H., Miyauchi, H., Shin, K., Yamauchi, K., Matsumoto, I., Abe, K., Takase, M. 2007. Orally Administered Lactoperoxidase Increases Expression of the FK506 Binding Protein 5 Gene in Epithelial Cells of the Small Intestine of Mice: A DNA Microarray Study. Bioscience, Biotechnology, and Biochemistry, 71(9), 2274–2282. https://doi.org/10.1271/bbb.70255
  • 115. Wakabayashi, H., Yamauchi, K., Takase, M. 2006. Lactoferrin research, technology and applications. International Dairy Journal, 16(11), 1241–1251. https://doi.org/10.1016/j.idairyj.2006.06.013
  • 116. Walzem, R.L., Dillard, C.J., German, J.B. 2002. Whey Components: Millennia of Evolution Create Functionalities for Mammalian Nutrition: What We Know and What We May Be Overlooking. Critical Reviews in Food Science and Nutrition, 42(4), 353–375. https://doi.org/10.1080/10408690290825574
  • 117. Ward, P.P., Paz, E., Conneely, and O.M. 2005. Lactoferrin: Multifunctional roles of lactoferrin: a critical overview. Cellular and Molecular Life Sciences, 62, 2540–2548. https://doi.org/10.1007/s00018-005-5369-8
  • 118. Xu, X.X., Jiang, H.R., Li, H.B., Zhang, T.N., Zhou, Q., Liu, N. 2010. Apoptosis of stomach cancer cell SGC-7901 and regulation of Akt signaling way induced by bovine Lactoferrin. Journal of Dairy Science, 93(6), 2344–2350. https://doi.org/10.3168/jds.2009-2926
  • 119. Zadow, J.G. 2012. Whey and Lactose Processing. Csiro, Division of food processing, Victoria, Australia.
  • 120. Zapata, R.C., Singh, A., Pezeshki, A., Nibber, T., Chelikani, P.K. 2017. Whey Protein Components - Lactalbumin and Lactoferrin - Improve Energy Balance and Metabolism. Scientific Reports, 7(1), 9917. https://doi.org/10.1038/s41598-017-09781-2
  • 121. Zarogoulidis, P., Tsakiridis, K., Karapantzou, C., Lampaki, S., Kioumis, I., Pitsiou, G., Papaiwannou, A., Hohenforst-Schmidt, W., Huang, H., Kesisis, G., Karapantzos, I., Chlapoutakis, S., Korantzis, I., Mpakas, A., Karavasilis, V., Mpoukovinas, I., Li, Q., Zarogoulidis, K. 2015. Use of Proteins as Biomarkers and Their Role in Carcinogenesis. Journal of Cancer, 6(1), 9–18. https://doi.org/10.7150/jca.10560
  • 122. Zhou, X., Hua, X., Huang, L., Xu, Y. 2019. Bioutilization of cheese manufacturing wastes (cheese whey powder) for bioethanol and specific product (galactonic acid) production via a two-step bioprocess. Bioresource Technology, 272, 70–76. https://doi.org/10.1016/j.biortech.2018.10.001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b0f17ae-dce8-49b6-959e-8bb28595566b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.