PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of a Selected External Carbon Source on the Share of COD Fractions and the Speed of Denitrification Processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the effectiveness of the N, P, C (nitrogen, phosphorus and carbon) removal from sewage with the use of molasses as an external carbon source (ECS). The research was carried out during the wastewater treatment processes in two SBR-type activated sludge reactors. A cycle of the SBR operation lasted 360 minutes and included the following phases: wastewater supply (2 min), anaerobic (60 min), aeration (210 min), sedimentation (60 min) and decantation (30 min). After twenty minutes of the wastewater supply, molasses was added to one of the reactors in the cycle, as a source of easily available organic compounds. The conducted tests showed that the use of molasses as an ECS during wastewater treatment resulted in higher nitrogen removal efficiency in comparison with the reactor without ECS. The wastewater treatment in the SBR without the addition of ECS resulted in a total nitrogen removal of 80% and ammonium nitrogen of 95.9%, whereas the wastewater treatment in the reactor with the addition of molasses resulted in the removal of total nitrogen at 90.3% and ammonium nitrogen at 97.3%. Despite the increase in the final nitrate concentration in both SBRs, the nitrate concentration in the reactor using an external carbon source was lower by as much as 4.5 mg N/dm3. The COD fractions and their changes in wastewater were determined in order to find out their quantitative and percentage share. Determination of the COD fraction allows assessing the susceptibility of wastewater to biological treatment, additionally indicating the impurities that are difficult to decompose, which reduce the effectiveness of biological wastewater treatment. Introduction of ECS in the form of molasses to municipal wastewater caused an increase in the SS fraction by 9 mg O2/dm3, thus increasing the percentage of the readily biodegradable dissolved organic compounds by about 10%. The increased amount of easily available carbon compounds has contributed to the increase of the denitrification rate. In the initial phase of denitrification with the addition of ECS in the form of molasses, an acceleration in the removal of nitrogen compounds by 2.48 mg N∙dm3/h compared to the control reactor, was observed.
Słowa kluczowe
Rocznik
Strony
57--63
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Faculty of Civil and Environmental Science, Bialystok University of Technology, ul. Wiejska 45A, Bialystok, 15-351, Poland
autor
  • Transition Technologies Managed Services Sp. z o.o.
Bibliografia
  • 1. Arshad M., Chan Z.M., Khalil-ur-Rehman M., Szach F.A., Rajoka M.I. 2008. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale. Lett. Appl. Microbiol., 47(5), 410–414
  • 2. Bernat K., Kulikowska D., Kordel A. 2016. Usuwanie związków azotu ze ścieków w procesach denitryfikacji i skróconej denitryfikacji z wykorzystaniem melasy jako źródła węgla organicznego. Ochrona Środowiska, 38(2), 9–15
  • 3. Cherchi C., Onnis-Hayden A., El-Shawabkeh I., Gu A.Z. 2009. Implication of using different carbon sources for denitrification in wastewater treatments. Water Environment Research, 81(8), 788–799
  • 4. Dąbrowski W., Puchlik M. 2010. Udział frakcji ChZT w ściekach mleczarskich w oczyszczalni stosującej intensywne usuwanie związków węgla, azotu i fosforu. Rocznik Ochrona Środowiska, 12, 735–746
  • 5. Dulekgurgen E., Dogruel S., Karahan Ö., Orhon D. 2006. Size distribution of wastewater COD fractions as an index for biodegradability. Water Research, 40, 273–282.
  • 6. Elefsiniotis, P., Li, D. 2006. The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochemical Engineering Journal, 28(2), 148–155.
  • 7. Fernández-Nava, Y., Maranón, E., Soons, J., Castrillón, L. 2010. Denitrification of high nitrate concentration wastewater using alternative carbon sources. Journal of Hazardous Materials, 173, 682–688.
  • 8. Ignatowicz K.; Piekarski J. Kozlowski D. 2011. Intensification of the Denitrification Process by Using Brenntaplus VP1 Preparation, Rocznik Ochrona Srodowiska Vol. 17, p 1178–1195 Part: 2
  • 9. Ignatowicz K. 2008. Sorption process for migration reduction of pesticides from graveyards.‎ Archives of Environmental Protection. 34(3). 143–149.
  • 10. Janczukowicz W., Rodziewicz J., Filipkowska U. 2011. Ocena procesów biologicznego usuwania azotanów (V) i fosforanów w komorze SBR z zewnętrznym źródłem węgla. Rocznik Ochrona Środowiska, 13, 453–470
  • 11. Janczukowicz, W., Rodziewicz, J. 2013. Źródła węgla w procesach biologicznego usuwania związków azotu i fosforu, Monografie Komitetu Inżynierii Środowiska Polskiej Akademii Nauk, vol. 114, Lublin.
  • 12. Mąkinia, J., Czerwonka, K. 2013. Wytyczne oceny alternatywnych źródeł węgla. Innowacyjne źródło węgla dla wspomagania denitryfikacji w komunalnych oczyszczalniach ścieków. Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka.
  • 13. Min, K., Park, K.-S., Jung,Y.-J., Khan, A.R. 2002. Acidogenic Fermentation: Utilization of Wasted Sludge as a Carbon Source in the Denitrification Process. Environmental Technology, 23(3), 293–302.
  • 14. Myszograj, S., Płuciennik-Koropczuk, E., Jakubaszek, A., Świętek, A. 2017. COD fractions – methods of measurement and use in wastewater treatment technology. Civil And Environmental Engineering Reports, 24(1), 195–206.
  • 15. Puchlik M., Ignatowicz K., Dabrowski W. 2015. Influence of biopreparation on wastewater purification process in constructed wetlands. Journal of Ecological Engineering, 16 (1). 159–163.
  • 16. Sadecka, Z., Płuciennik-Koropczuk, E., Sieciechowicz, A. 2011. Frakcje ChZT ścieków w modelach biokinetycznych. Forum Eksploatatora, 54(3), 72–77.
  • 17. Silva F., Nadais H., Prates A., Arroja L., Capela I. 2009. Molasses as an external carbon source for anaerobic treatment of sulphite evaporator condensate. Bioresource Technology, 100, 1943–1950.
  • 18. Smyk J., Ignatowicz K. 2017. The influence of molasses on nitrogen removal in wastewater treatment with activated sludge, Journal of Ecological Engineering, 18, 199–203.
  • 19. Struk-Sokołowska J. 2011. Zmiany udziału frakcji ChZT podczas oczyszczania ścieków komunalnych z dużym udziałem ścieków mleczarskich. Rocznik Ochrony Środowiska, 13, 2015-2032.
  • 20. Torà, J.A., Baeza, J.A., Carrera, J., Oleszkiewicz, J.A. 2011. Denitritation of a high-strength nitrite wastewater in a sequencing batch reactor using different organic carbon sources. Chemical Engineering Journal, 172 (2–3), 994–998.
  • 21. Wu J., Yan G., Zhou G., Xu T. 2014. Wastewater COD biodegradability fractionated by simple physical – chemical analysis. Chemical Engineering Journal, 258, 450–459.
  • 22. Yang X., Wang S., Zhou L. 2012. Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6. Bioresource Technology, 104, 65–72.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b0d684b-1e32-4c53-8abf-f60709b6cd8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.