Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Software cost estimation is a critical activity in the development life cycle for controlling risks and planning project schedules. Accurate estimation of the cost before the start-up of a project is essential for both the developers and the customers. Therefore, many models were proposed to address this issue, in which COCOMO II has been being widely employed in actual software projects. Good estimation models, such as COCOMO II, can avoid insufficient resources being allocated to a project. However, parameters for estimation formula in this model have not been optimized yet, and so the estimated results are not close to the actual results. In this paper, a novel technique to optimize the coefficients for COCOMO II model by using teaching-learning-based optimization (TLBO) algorithm is proposed. The performance of the model after optimizing parameters was tested on NASA software project dataset. The obtained results indicated that the improvement of parameters provided a better estimation capabilities compared to the original COCOMO II model.
Rocznik
Tom
Strony
84--89
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
- The University of Danang, University of Science and Technology 54 Nguyen Luong Bang, Lien Chieu Danang, Vietnam
autor
- The University of Danang, University of Science and Technology 54 Nguyen Luong Bang, Lien Chieu Danang, Vietnam
Bibliografia
- [1] C. Jones, “Why flawed software projects are not cancelled in time”, Cutter IT J., vol. 10, no. 12, pp. 12–17, 2003.
- [2] B. Clark, S. Devnani-Chulani, and B. Boehm, “Calibrating the COCOMO II post-architecture model”, in Proc. 20th Int. Conf. Softw. Engin. ICSE, Kyoto, Japan, 1998, pp. 477–480.
- [3] T. Menzies, The Tera-PROMISE Repository for COCOMO 93, 2015 [Online]. Available: http://openscience.us/repo/effort/cocomo/ nasa93.html
- [4] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and R. Selby, “Cost Models for Future Software Life Cycle Processes: COCOMO 2.0”, Annals of Softw. Engin., vol. 1, no. 1, pp. 57–94, 1995.
- [5] C. Abts, B. Clark, S. Devnani-Chulani, E. Horowitz, R. Madachy, D. Reifer, R. Selby, and B. Steece, “COCOMO II Model Definition Manual”, Tech. Rep., Center for Software Engineering, University of Southern California, Los Angeles, CA, USA, 1998.
- [6] J. Kaur and R. Sindhu, “Parameter estimation of COCOMO II using tabu search”, Int. J. Comp. Sci. Inform. Technol., vol. 5, no. 3, pp. 4463–4465, 2014.
- [7] Z. Chen, T. Menzies, D. Port, and B. Boehm, “Feature Subset Selection Can Improve Software Cost Estimation Accuracy”, in Proc. Int. Worksh. Predic. Models in Softw. Engin. PROMISE 2005, St. Louis, MO, USA, 2005, pp. 1–6.
- [8] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching-LearningBased optimization: A novel method for constrained mechanical design optimization problems”, Computer-Aided Design, vol. 43, pp. 303–315, 2011.
- [9] B. Boehm, C. Abts, and S. Chulani, “Software development cost estimation approaches – A survey”, Annals of Softw. Engin., vol. 10, no. 1–4, pp. 177-205, 2000.
- [10] C. Jones, “A short history of software estimation tools”, Tech. Rep., VP and CTO, Namcook Analytics LLC, Narragansett, RI, USA, 2013.
- [11] T. Menzies, B. Boehm, Y. Yang, J. Hihn, and N. Lekkalapudi, “Just how good is COCOMO and parametric estimation”, in Proc. 29th Int. Forum on COCOMO and Syst. Softw. Cost Model., Los Angeles, CA, USA, 2014 [Online]. Available: http://csse.usc.edu/ new/events/cocomo-2014/program.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b0b3b62-5e72-4cb7-a2fe-f93dacbd9a19