PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Definable continuous selections of set-valued maps in o-minimal expansions of the real field

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let T be a set-valued map from a subset of Rn to Rm. Suppose (R;+,⋅,T) is o-minimal. We prove that (1) if for every x ∈ Rn, each connected component of T(x) is convex, then T has a continuous selection if and only if T has a continuous selection definable in (R;+,⋅,T); (2) if n = 1 or m = 1, then T has a continuous selection if and only if T has a continuous selection definable in (R;+,⋅,T).
Słowa kluczowe
Rocznik
Strony
97--105
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
  • Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
Bibliografia
  • [1] M. Aschenbrenner and A. Thamrongthanyalak, Whitney's extension problem in o-minimal structures, preprint, www.math.ucla.edu/~matthias/pdf/Whitney.pdf.
  • [2] M. Aschenbrenner and A. Thamrongthanyalak, Michael's selection theorem in a semi-linear context, Adv. Geom. 15 (2015), 293-313.
  • [3] M. Czapla and W. Pawłucki, Michael's selection theorem for a mapping definable in an o-minimal structure defined on a set of dimension 1, Topol. Methods Nonlinear Anal. 49 (2017), 377-380.
  • [4] A. Fornasiero, Definably connected nonconnected sets, Math. Logic Quart. 58 (2012), 125-126.
  • [5] Z. Han, X. Cai, and J. Huang, Theory of Control Systems Described by Differential Inclusions, Springer Tracts in Mechanical Engineering, Shanghai Jiaotong Univ. Press, Shanghai, and Springer, Berlin, 2016.
  • [6] A. Kechris, Classical Descriptive Set Theory, Grad. Texts Math. 156, Springer, New York, 1995.
  • [7] E. Michael, Continuous selections. I, Ann. of Math. (2) 63 (1956), 361-382.
  • [8] E. Michael, Selected selection theorems, Amer. Math. Monthly 63 (1956), 233-238.
  • [9] S. Park, Applications of Michael's selection theorems to fixed point theory, Topology Appl. 155 (2008), 861-870.
  • [10] D. Samet, Continuous selections for vector measures, Math. Oper. Res. 12 (1987), 536-543.
  • [11] A. Thamrongthanyalak, Michael's selection theorem in d-minimal expansions of the real field, preprint, pioneer.netserv.chula.ac.th/~tathipa1/dminselection.pdf.
  • [12] L. van den Dries, Tame Topology and o-Minimal Structures, London Math. Soc. Lecture Note Ser. 248, Cambridge Univ. Press, Cambridge, 1998.
  • [13] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b0b248a-43c4-416b-9c97-572868137b98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.