PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the cook-off processes of HMX-based mixed explosives

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to investigate the characteristics of the thermal reaction for two kinds of mixed explosives, PBXC-10 (HMX/TATB/Binder, 38/57/5) and JO-8 (HMX/Binder, 95/5), multi-point measured temperature cook-off tests were carried out at different heating rates. The thermal transfer and finite chemical reactions that include the β→δ transition of HMX, and the endothermic and exothermic cook-off processes were analyzed. A 3D model of the explosive cook-off test was developed to simulate the thermal and chemical behaviour in a thermal ignition. The decomposition mechanisms for HMX and TATB are described by the multistep, chemical kinetic model. The thermal properties, decomposition pathways, and chemical kinetic reaction rate constants for each component are used to develop the reaction courses at various weight percentages. The thermal decomposition reaction of a multi-component, mixed explosive can be predicted as long as the chemical kinetics model of each single-base explosive and binder are known. The phase transition of HMX has an influence on the temperature of the explosive, especially for an explosive with a high HMX content. For mixed explosives containing HMX and TATB, most of the heat release is produced by the decomposition of HMX before ignition, but TATB can delay the ignition time and decrease the reaction violence in the cook-off process.
Rocznik
Strony
199--218
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing100081, China
  • maxin0926@hotmail.com
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing100081, China
Bibliografia
  • [1] Sechmit G.T., Faubion B.D., ODTX Test Program, MHSMP-80-48, 1980.
  • [2] Hsu P.C., Hust G., Howard M., Maienschein J.L., The ODTX System for Thermal Ignition and Thermal Safety Study of Energetic Materials, The 14th International Detonation Symposium, April, Coeur d’Alene Resort, 2010.
  • [3] Hsu P.C., Hust G., May C., Howard M., Chidester S.K., Springer H.K., Maienschein J.L., Study of Thermal Sensitivity and Thermal Explosion Violence of Energetic Materials in the LLNL ODTX System, LLNL-PROC-492217, Lawrence Livermore Laboratory, Livermore, 2011.
  • [4] Pakulak J.M., USA Small-scale Cook-off Bomb (SCB) Test, Minutes of 21st Department of Defense Explosives Safety Board Explosives Safety Seminar, August, Houston, 1984.
  • [5] Christian S.L., Cook-off Modeling of PBXN-112 in a Small-scale Cook-off Bomb Using AlE3D, California State University, Chico, 2007.
  • [6] Wardell J.F., Maienschein J.L., The Scaled Thermal Explosion Experiment, The 12th International Detonation Symposium, August, San Diego, 2002.
  • [7] Kaneshige M.J., Renlund A.M., Schmitt R.G., Erikson W.W., Cook-off Experiments for Model Validation at Sandia National Laboratories, The 12th International Detonation Symposium, August, San Diego, 2002.
  • [8] Semenov N.N., Theories of Combustion Process, Z. fur Physik, 1928, 48, 571-582.
  • [9] Frank-Kamenetskii D.A., Calculation of Thermal Explosion Limits, Acta Physicochimica U.R.S.S., 1939, 10, 365-370.
  • [10] McGuire R.R., Tarver C.M., Chemical Decomposition Models for Thermal Explosion of Confined HMX, RDX, and TNT Explosives, UCRL-84986, Lawrence Livermore Laboratory, Livermore, 1981.
  • [11] Tarver C.M., Koerner J.G., Effects of Endothermic Binders on Times to Explosion of HMX- and TATB-Based Plastic Bonded Explosives, J. Energ. Mater., 2008, 26, 1-28.
  • [12] Tarver C.M., Effects of Exothermic Binders on Times to Explosion of HMX Plastic Bonded Explosives, he 14th International Detonation Symposium, April, Coeur d’Alene Resort, 2010.
  • [13] Yoh J.J., McClelland M.A., Maienschein J.L., Wardell J.F., Tarver C.M., Simulating Thermal Explosion of RDX-based Explosives: Model Comparison with Experiment, J. Appl. Phys., 2005, 97, 1-11.
  • [14] Yoh J.J., McClelland M.A., Maienschein J.L., Nichols A.L., Tarver C.M., Simulating Thermal Explosion of HMX-based Explosives: Model Comparison with Experiment, J. Appl. Phys., 2006, 100, 1-9.
  • [15] Dickson P.M., Asay B.W., Henson B.F., Fugard C.S., Wong J., Measurement of Phase Change and Thermal Decomposition Kinetics During Cook-off of PBX 9501, AIP Conference Proceedings, June, Snowbird, 1999.
  • [16] Perry W.L., Gunderson J.A., Dickson P.M., Application of a Reversible Four-step HMX Kinetic Model to an Impact-induced Friction Ignition Problem, The 14th International Detonation Symposium, April, Coeur d’Alene Resort, 2010.
  • [17] Šelešovský J., Thermal Loading of Explosives − Finite Difference Method with Time Step Reduction, J. Hazard. Mater., 2010, 174, 289-294.
  • [18] Aydemir E., Ulas A., A Numerical Study on the Thermal Initiation of a Confined Explosive in 2-D Geometry, J. Hazard. Mater., 2011, 186, 396-400.
  • [19] Henson B.F., Asay B.W., Sander R.K., Son S.F., Robinson J.M., Dickson P.M., Dynamic Measurement of the HMX β-δ Phase Transition by Second Harmonic Generation, Phys. Rev. Lett., 1999, 82, 1213-1216.
  • [20] Land T.A., Siekhaus W.J., Foltz M.F., Beherns R. Jr., Condensed-phase Thermal Decomposition of TATB Investigated by AFM and STMBMS, The 10th International Detonation Symposium, July, Boston, 1993.
  • [21] Dong H.S., Zhou F.F., Performance of High Explosives and Related Materials, Science Press, Beijing, 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b077947-bc1a-4bf1-8f2e-423eca138c9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.