PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biopolymers in wood-based materials – a recent review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biopolymers in wood-based materials – a recent review. The aim of the paper was to summarize the current state-of-art in the field of biopolymers application in the composites based on lignocellulosic raw materials. The cited literature show, in research and experiments, how promising the green composites market becomes. Biocomposites are becoming more interesting and promising alternative to commonly used petropolymers, which have a negative impact on health and the environment.
PL
Biopolimery w materiałach drewnopochodnych – najnowszy przegląd. Celem pracy było podsumowanie aktualnego stanu wiedzy w zakresie zastosowania biopolimerów w kompozytach opartych na surowcach lignocelulozowych. Cytowana literatura pokazuje, w badaniach i eksperymentach, jak obiecujący staje się rynek „zielonych kompozytów”. Biokompozyty stają się ciekawszą i obiecującą alternatywą dla powszechnie stosowanych petropolimerów, które mają negatywny wpływ na zdrowie i środowisko.
Twórcy
  • Department of Technology and Entrepreneurship in Wood Industry, Faculty of Wood Technology/Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW
  • Department of Technology and Entrepreneurship in Wood Industry, Faculty of Wood Technology/Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW
Bibliografia
  • 1. AKBARI, S., GUPTA, A., KHAN, T. A., JAMARI, S. S., ANI, N. B. C., AND PODDAR, P. (2014). Synthesis and characterization of medium density fibre board by using mixture of natural rubber latex and starch as an adhesive, Journal of the Indian Academy of Wood Science, 11(2), 109–115. DOI: 10.1007/s13196-014-0124-0.
  • 2. AKINYEMI, B. A., OLAMIDE, O., AND OLUWASOGO, D. (2019). Formaldehyde free particleboards from wood chip wastes using glutaraldehyde modified cassava starch as binder, Case Studies in Construction Materials, Elsevier Ltd., 11, e00236. DOI: 10.1016/j.cscm.2019.e00236.
  • 3. AMACHE, R., SUKAN, A., SAFARI, M., ROY, I., AND KESHAVARZ, T. (2013). Advances in PHAs production, Chemical Engineering Transactions, 32(Francis 2011), 931–936. DOI: 10.3303/CET1332156.
  • 4. AMINI, M. H. M., HASHIM, R., HIZIROGLU, S., SULAIMAN, N. S., AND SULAIMAN, O. (2013). Properties of particleboard made from rubberwood using modified starch as binder, Composites Part B: Engineering, Elsevier Ltd, 50, 259–264. DOI: 10.1016/j.compositesb.2013.02.020.
  • 5. AWAL, A., RANA, M., AND SAIN, M. (2015). Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites, Mechanics of Materials, Elsevier Ltd, 80(Part A), 87–95. DOI: 10.1016/j.mechmat.2014.09.009.
  • 6. BAKKEN, A. C., AND TALEYARKHAN, R. P. (2020). Plywood wood based composites using crystalline/amorphous PLA polymer adhesives, International Journal of Adhesion and Adhesives, Elsevier Ltd, 99(February), 102581. DOI: 10.1016/j.ijadhadh.2020.102581.
  • 7. BALLA, V. K., KATE, K. H., SATYAVOLU, J., SINGH, P., AND TADIMETI, J. G. D. (2019). Additive manufacturing of natural fibre reinforced polymer composites: Processing and prospects, Composites Part B: Engineering, Elsevier Ltd, 174(May), 106956 DOI: 10.1016/j.compositesb.2019.106956.
  • 8. BASKARAN, M., HASHIM, R., SAID, N., RAFFI, S. M., KUNASUNDARI, B., SUDESH, K., SULAIMAN, O., ARAI, T., KOSUGI, A., MORI, Y., SUGIMOTO, T., AND SATO, M. (2012). Properties of binderless particleboard from oil palm trunk with addition of polyhydroxyalkanoates, Composites Part B: Engineering, Elsevier Ltd, 43(3), 1109–1116. DOI: 10.1016/j.compositesb.2011.10.008.
  • 9. BASKARAN, M., HASHIM, R., SULAIMAN, O., AWALLUDIN, M. F., SUDESH, K., ARAI, T., AND KOSUGI, A. (2019). Properties of Particleboard Manufactured from Oil Palm Trunk Waste Using Polylactic Acid as a Natural Binder, Waste and Biomass Valorization, Springer Netherlands, 10(1), 179–186. DOI: 10.1007/s12649-017-0026-7.
  • 10. BATTEGAZZORE, D., ABT, T., MASPOCH, M. L., AND FRACHE, A. (2019). Multilayer cotton fabric bio-composites based on PLA and PHB copolymer for industrial load carrying applications, Composites Part B: Engineering, Elsevier, 163(January), 761–768. DOI: 10.1016/j.compositesb.2019.01.057.
  • 11. BOON, J. G., HASHIM, R., DANISH, M., AND NADHARI, W. N. A. W. (2019). Physical and Mechanical Properties of Binderless Particleboard Made from Steam-Pretreated Oil Palm Trunk Particles, Journal of Composites Science, 3(46), 1–6. DOI: 10.3390/jcs3020046.
  • 12. BUGNICOURT, E., CINELLI, P., LAZZERI, A., AND ALVAREZ, V. (2014). “Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging, Express Polymer Letters, 8(11), 791–808. DOI: 10.3144/expresspolymlett.2014.82.
  • 13. CASTRO-AGUIRRE, E., IÑIGUEZ-FRANCO, F., SAMSUDIN, H., FANG, X., AND AURAS, R. (2016). Poly(lactic acid)—Mass production, processing, industrial applications, and end of life, Advanced Drug Delivery Reviews, Elsevier B.V., 107, 333–366. DOI: 10.1016/j.addr.2016.03.010.
  • 14. CHEN, Y., GEEVER, L. M., KILLION, J. A., LYONS, J. G., HIGGINBOTHAM, C. L., AND DEVINE, D. M. (2016). Review of Multifarious Applications of Poly (Lactic Acid), Polymer-Plastics Technology and Engineering, Taylor & Francis, 55(10), 1057–1075. DOI: 10.1080/03602559.2015.1132465.
  • Google Scholar
  • 15. CSIKÓS, Á., FALUDI, G., DOMJÁN, A., RENNER, K., MÓCZÓ, J., AND PUKÁNSZKY, B. (2015). Modification of interfacial adhesion with a functionalized polymer in PLA/wood composites, European Polymer Journal, 68, 592–600. DOI: 10.1016/j.eurpolymj.2015.03.032.
  • 16. DAI, D., AND FAN, M. (2013). Wood fibres as reinforcements in natural fibre composites: Structure, properties, processing and applications, Natural Fibre Composites: Materials, Processes and Applications, Woodhead Publishing Limited. DOI: 10.1533/9780857099228.1.3.
  • 17. DALU, M., TEMIZ, A., ALTUNTAŞ, E., DEMIREL, G. K., AND ASLAN, M. (2019). Characterization of tanalith E treated wood flour filled polylactic acid composites,” Polymer Testing, 76 (December 2018), 376–384. DOI: 10.1016/j.polymertesting.2019.03.037.
  • 18. DIMONIE, M., AND RÂPǍ, M. (2010). Biodegradable blends based on PHB and wood fibre, UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 72(3), 3–10.
  • 19. DOMÍNGUEZ-ROBLES, J., TARRÉS, Q., DELGADO-AGUILAR, M., RODRÍGUEZ, A., ESPINACH, F. X., AND MUTJÉ, P. (2018). Approaching a new generation of fibreboards taking advantage of self lignin as green adhesive, International Journal of Biological Macromolecules, Elsevier B.V., 108, 927–935. DOI: 10.1016/j.ijbiomac.2017.11.005.
  • 20. GADHAVE, R. V., MAHANWAR, P. A., AND GADEKAR, P. T. (2017). Starch-Based Adhesives for Wood/Wood Composite Bonding: Review, Open Journal of Polymer Chemistry, 07(02), 19–32. DOI: 10.4236/ojpchem.2017.72002.
  • 21. GAUGLER, M., LUEDTKE, J., GRIGSBY, W. J., AND KRAUSE, A. (2019). A new methodology for rapidly assessing interfacial bonding within fibre-reinforced thermoplastic composites, International Journal of Adhesion and Adhesives, Elsevier Ltd, 89(November 2018), 66–71. DOI: 10.1016/j.ijadhadh.2018.11.010.
  • 22. GONZÁLEZ-GARCÍA, S., FEIJOO, G., WIDSTEN, P., KANDELBAUER, A., ZIKULNIG-RUSCH, E., AND MOREIRA, M. T. (2009). Environmental performance assessment of hardboard manufacture, International Journal of Life Cycle Assessment, 14(5), 456–466. DOI: 10.1007/s11367-009-0099-z.
  • 23. HASHIM, R., NADHARI, W. N. A. W., SULAIMAN, O., SATO, M., HIZIROGLU, S., KAWAMURA, F., SUGIMOTO, T., SENG, T. G., AND TANAKA, R. (2012). Properties of binderless particleboard panels manufactured from oil palm biomass, BioResources, 7(1), 1352–1365. DOI: 10.15376/biores.7.1.1352-1365.
  • 24. JANG, J. Y., JEONG, T. K., OH, H. J., YOUN, J. R., AND SONG, Y. S. (2012). “Thermal stability and flammability of coconut fibre reinforced poly(lactic acid) composites,” Composites Part B: Engineering, Elsevier Ltd, 43(5), 2434–2438. DOI: 10.1016/j.compositesb2011.11.003.
  • 25. KUCIEL, S., MAZUR, K., AND HEBDA, M. (2020). The Influence of Wood and Basalt Fibres on Mechanical, Thermal and Hydrothermal Properties of PLA Composites, Journal of Polymers and the Environment, Springer US, 28(4), 1204–1215. DOI: 10.1007/s10924-020-01677-z
  • 26. LAU, A. K., AND HUNG, A. P.-Y. (EDS.). (2017). Natural fibre-reinforced biodegradable and bioresorbable polymer composites, Woodhead Publishing.
  • 27. LUEDTKE, J., GAUGLER, M., GRIGSBY, W. J., AND KRAUSE, A. (2019). Understanding the development of interfacial bonding within PLA/wood-based thermoplastic sandwich composites, Industrial Crops and Products, Elsevier, 127(October 2018), 129–134. DOI: 10.1016/j.indcrop. 2018.10.069.
  • 28. MERTENS, O., GURR, J., AND KRAUSE, A. (2017). The utilization of thermomechanical pulp fibres in WPC: A review, Journal of Applied Polymer Science, 134(31). DOI: 10.1002/app.45161.
  • 29. MOHANTY, A. K., MISURA, M., AND DRZAL, L. T. (2005). Natural Fibres, Biopolymers, and Biocomposites, CRC Press.
  • 30. NADHARI, W. N. A. W., HASHIM, R., SULAIMAN, O., SATO, M., SUGIMOTO, T., AND SELAMAT, M. E. (2013). Utilization of oil palm trunk waste for manufacturing of binderless particleboard: optimization study, BioResources, 8(2), 1675–1696.
  • 31. NAGARAJAN, V., MOHANTY, A. K., AND MISRA, M. (2016). Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance, ACS Sustainable Chemistry and Engineering, 4(6), 2899–2916. DOI: 10.1021/acssuschemeng.6b00321.
  • 32. NONAKA, S., UMEMURA, K., AND KAWAI, S. (2013). Characterization of bagasse binderless particleboard manufactured in high-temperature range, Journal of Wood Science, 59(1), 50–56. DOI: 10.1007/s10086-012-1302-6.
  • 33. OKUNOLA, A., KEHINDE, O., OLUWASEUN, A., AND OLUFIROPO, A. (2019). Public and Environmental Health Effects of Plastic Wastes Disposal: A Review, Journal of Toxicology and Risk Assessment, 5(2). DOI: 10.23937/2572-4061.1510021.
  • 34. PATEL, A. K., MICHAUD, P., PETIT, E., DE BAYNAST, H., GRÉDIAC, M., AND MATHIAS, J. D. (2013). Development of a chitosan-based adhesive. Application to wood bonding, Journal of Applied Polymer Science, 127(6), 5014–5021. DOI: 10.1002/app.38097.
  • 35. PICKERING, K. L., SAWPAN, M. A., JAYARAMAN, J., AND FERNYHOUGH, A. (2011). Influence of loading rate, alkali fibre treatment and crystallinity on fracture toughness of random short hemp fibre reinforced polylactide bio-composites, Composites Part A: Applied Science and Manufacturing, Elsevier Ltd, 42(9), 1148–1156. DOI: 10.1016/j.compositesa.2011.04.020.
  • 36. RAGHU, N., KALE, A., RAJ, A., AGGARWAL, P., AND CHAUHAN, S. (2018). “Mechanical and thermal properties of wood fibres reinforced poly(lactic acid)/thermoplasticized starch composites,” Journal of Applied Polymer Science, 135(15), 1–10. DOI: 10.1002/app.46118.
  • 37. RAGOUBI, M., GEORGE, B., MOLINA, S., BIENAIMÉ, D., MERLIN, A., HIVER, J. M., AND DAHOUN, A. (2012). Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix, Composites Part A: Applied Science and Manufacturing, Elsevier Ltd, 43(4), 675–685. DOI: 10.1016/j.compositesa.2011.12.025.
  • 38. Renewable Carbon – Bio- and CO2-based Economy. (2018). <http://bio-based.eu/nova-papers/> (March 2, 2020)).
  • 39. ROFFAEL, E., DIX, B., AND OKUM, J. (2000). Use of spruce tannin as a binder in particleboards and medium density fibreboards (MDF), Holz als Roh - und Werkstoff, 58(5), 301–305. DOI: 10.1007/s001070050432.
  • 40. SALLEH, K. M., HASHIM, R., SULAIMAN, O., HIZIROGLU, S., NADHARI, W. N. A. W., KARIM, N. A., JUMHURI, N., AND ANG, L. Z. P. (2015). Evaluation of properties of starch-based adhesives and particleboard manufactured from them, Journal of Adhesion Science and Technology, Taylor & Francis, 29(4), 319–336. DOI: 10.1080/01694243.2014.987362.
  • 41. SEGGIANI, M., CINELLI, P., VERSTICHEL, S., PUCCINI, M., VITOLO, S., ANGUILLESI, I., AND LAZZERI, A. (2015). Development of fibres-reinforced biodegradable composites, Chemical Engineering Transactions, 43, 1813–1818. DOI: 10.3303/CET1543303.
  • 42. TAN, H., ZHANG, Y., AND WENG, X. (2011). Preparation of the plywood using starch-based adhesives modified with blocked isocyanates, Procedia Engineering, 15, 1171–1175. DOI: 10.1016/j.proeng.2011.08.216
  • 43. TĂNASE, E. E., POPA, M. E., RÂPĂ, M., AND POPA, O. (2015). PHB/Cellulose Fibres Based Materials: Physical, Mechanical and Barrier Properties, Agriculture and Agricultural Science Procedia, 6, 608–615. DOI: 10.1016/j.aaspro.2015.08.099.
  • 44. THENG, D., ARBAT, G., DELGADO-AGUILAR, M., VILASECA, F., NGO, B., AND MUTJE, P. (2015). All-lignocellulosic fibreboard from corn biomass and cellulose nanofibres, Industrial Crops and Products, 76, 166–173. DOI: https://doi.org/10.1016/j.indcrop.2015.06.046.
  • 45. UMEMURA, K., SUGIHARA, O., AND KAWAI, S. (2014). Investigation of a new natural adhesive composed of citric acid and sucrose for particleboard II: effects of board density and pressing temperature, Journal of Wood Science, 61(1), 40–44. DOI: 10.1007/s10086-014-1437-8.
  • 46. WAHIT, M. U., AKOS, N. I., AND LAFTAH, W. A. (2012). Influence of natural fibres on the mechanical properties and biodegradation of poly(lactic acid) and poly(e-caprolactone) composites: a review, Polymers Composites, 1045–1053. DOI: 10.1002/pc.
  • 47. WANG, H., LIANG, J., ZHANG, J., ZHOU, X., AND DU, G. (2017). Performance of urea-formaldehyde adhesive with oxidized cassava starch, BioResources, 12(4), 7590–7600. DOI: 10.15376/biores.12.4.7590-7600.
  • 48. WAY, C., WU, D. Y., CRAM, D., DEAN, K., AND PALOMBO, E. (2013). Processing Stability and Biodegradation of Polylactic Acid (PLA) Composites Reinforced with Cotton Linters or Maple Hardwood Fibres, Journal of Polymers and the Environment, 21(1), 54–70. DOI: 10.1007/s10924-012-0462-1.
  • 49. YE, P., AN, J., ZHANG, G., WANG, L., WANG, P., AND XIE, Y. (2018). Preparation of particleboard using dialdehyde starch and corn stalk, BioResources, 13(4), 8930–8942. DOI: 10.15376/biores.13.4.8930-8942.
  • 50. ZHOU, X., ZHENG, F., LV, C., TANG, L., WEI, K., LIU, X., DU, G., YONG, Q., AND XUE, G. (2013). Properties of formaldehyde-free environmentally friendly lignocellulosic composites made from poplar fibres and oxygen-plasma-treated enzymatic hydrolysis lignin, Composites Part B: Engineering, Elsevier Ltd, 53, 369–375. DOI: 10.1016/j.compositesb.2013.05.037.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b045709-1f85-4668-a0ff-4d19b2d7f9d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.