Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Due to the increasing problem resulting from environmental pollution with heavy metals, great emphasis is placed on the development of removal methods of these pollutants from the environment. This study presents a literature review on the methods for the removal of nickel ions from aqueous solutions such as sorption, especially using low-cost sorbents which are very popular in 21𝑠𝑡 century, electrochemical processes and membrane techniques. It is often impossible to use a single technique for efficient removal of heavy metals from wastewater as the process depends on many factors, such as wastewater composition, pH, temperature and many others. The aim of this review is to present some selected removal techniques of nickel(II) from wastewater from the point of view of their efficiency and applicability.
Czasopismo
Rocznik
Tom
Strony
437--–448
Opis fizyczny
Bibliogr. 37 poz., tab., il.
Twórcy
autor
- Poznan University of Technology, Faculty of Energy and Environmental Engineering, Institute of Environmental Engineering and Building Installations, Berdychowo 4, 60-965 Poznan
- Poznan University of Technology, Faculty of Energy and Environmental Engineering, Institute of Environmental Engineering and Building Installations, Berdychowo 4, 60-965 Poznan
autor
- Poznan University of Technology, Faculty of Energy and Environmental Engineering, Institute of Environmental Engineering and Building Installations, Berdychowo 4, 60-965 Poznan
autor
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan
autor
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznan
autor
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznan
autor
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan
Bibliografia
- 1. Akbal F., CamcıS., 2011. Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination, 269, 214–222. DOI: 10.1016/j.desal.2010.11.001.
- 2. Alguacil F.J., Garcia-Diaz I., Lopez F., Sastre A.M., 2011. Cobalt(II) membrane-extraction by DP-8R/Exxsol D100 using pseudo-emulsion based hollow fiber strip dispersion (PEHFSD) processing. Sep. Purif. Technol., 80, 467–472. DOI: 10.1016/j.seppur.2011.05.029.
- 3. Arabameri A., Moghaddam M.R.A., Azadmehr A.R., Shabestar M.P., 2022. Lessenergy and material consumption in an electrocoagulation system using AC waveform instead of DC for nickel removal: Process optimization through RSM. Chem. Eng. Process. Process Intensif., 174, 108869. DOI: 10.1016/j.cep.2022.108869.
- 4. Bhatnagar A., Sillanpää M., 2014. Application of nanoadsorbents in water treatment, In: Kharisov B.I., Kharissova O.V., Dias H.V.R. (Eds.), Nanomaterials for environmental protection. John Wiley & Sons, Inc., 237–247. DOI: 10.1002/9781118845530.ch15.
- 5. Bohli T., Ouederni A., Fiol N., Villaescusa I., 2015. Single and binary adsorption of some heavy metal ions from aqueous solutions by activated carbon derived from olive stones. Desalin. Water Treat., 53, 1082-1088. DOI: 10.1080/19443994.2013.859099.
- 6. Charazińska S., Burszta-Adamiak E., Lochyński P., 2022. Recent trends in Ni(II) sorption from aqueous solutions using natural materials. Rev. Environ. Sci. Biotechnol., 21, 105–138. DOI: 10.1007/s11157-021-09599-5.
- 7. Chronopoulos G., Cakmak E.G., Tempany P., Klein G., Brinkmann T., Zerger B., Roudier S., 2020. Best available techniques (BAT) reference document on surface treatment using organic solvents including preservation of wood and wood products with chemicals. Industrial Emissions Directive 2010/75/EU (integrated pollution prevention and control). Publications Office of the European Union, Luxembourg. DOI: 10.2760/857.
- 8. De Gisi S., Lofrano G., Grassi M., Notarnicola M., 2016. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Mater. Technol., 9, 10–40. DOI: 10.1016/j.susmat. 2016.06.002.
- 9. Duan H., Liu H., Hu C., Yang X., Wang X., 2020. Highly efficient and selective membrane separation of copper from nickel in ammoniacal solution using mixtures of M5640 and BESO as membrane carriers. RSC Adv., 10, 18860–18867. DOI: 10.1039/d0ra02802a.
- 10. Dz. U. 2019 poz. 1311. Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 12 lipca 2019 r.w sprawie substancji szczególnie szkodliwych dla środowiska wodnego oraz warunków, jakie należy spełnić przy wprowadzaniu do wód lub do ziemi ścieków, a także przy odprowadzaniu wód opadowych lub roztopowych do wód lub do urządzeń wodnych. Available at: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001311.
- 11. Dz.U. 2016 poz. 1757. Obwieszczenie Ministra Infrastruktury i Budownictwa z dnia 28 września 2016 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Budownictwa w sprawie sposobu realizacji obowiązków dostawców ścieków przemysłowych oraz warunków wprowadzania ścieków do urządzeń kanalizacyjnych. Available at: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160001757.
- 12. Dz.U. 2019 poz. 1220. Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 28 czerwca 2019 r. w sprawie substancji szczególnie szkodliwych dla środowiska wodnego, których wprowadzanie w ściekach przemysłowych do urządzeń kanalizacyjnych wymaga uzyskania pozwolenia wodnoprawnego. Available at: https: //isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001220.
- 13. Ewecharoen A., Thiravetyan P., Nakbanpote W., 2008. Comparison of nickel adsorption from electroplating rinse water by coir pith and modified coir pith. Chem. Eng. J., 137, 181–188. DOI: 10.1016/j.cej.2007.04.007.
- 14. Gupta V.K., Carrott P.J.M., Ribeiro Carrott M.M.L., Suhas, 2009. Low-cost adsorbents: growing approach to wastewater treatment – a review. Crit. Rev. Env. Sci. Technol., 39, 783–842. DOI: 10.1080/10643380801977610.
- 15. He X., Yao B., Xia Y., Huang H., Gan Y., Zhang W., 2020. Coal fly ash derived zeolite for highly efficient removal of Ni2 ̧ in waste water. Powder Technol., 367, 40–46. DOI: 10.1016/j.powtec.2019.11.037.
- 16. Keshtkar Z., Tamjidi S., Vaferi B., 2021. Intensifying nickel (II) uptake from wastewater using the synthesized 𝛾-alumina: An experimental investigation of the effect of nano-adsorbent properties and operating conditions. Environ. Technol. Innovation, 22, 101439. DOI: 10.1016/j.eti.2021.101439.
- 17. Kislik V. 2010. Liquid membranes. Principles and applications in chemical separations and wastewater treatment. Elsevier, Amsterdam. DOI: 10.1016/C2009-0-18491-X.
- 18. Kończyk J., 2014. Application of liquid membranes for selective heavy metals removal from industrial wastewaters. Prace Naukowe Akademii im. Jana Długosza w Częstochowie. Technika, Informatyka, Inżynieria Bezpieczeństwa, 2, 113–128 (in Polish). DOI: 10.16926/tiib.2014.02.09.
- 19. Kumar A., Balouch A., Pathan A., Abdullah, Jagirani M.J., Mahar A.M., Zubair M., Laghari B., 2019. Remediation of Nickel ion from wastewater by applying various techniques: a review. Acta Chem. Malaysia, 3, 1-15. DOI: 10.2478/acmy-2019-0001.
- 20. Li T., Zhang W., Zhai S., Gao G., Ding J., Zhang W., Liu Y., Zhao X., Pan B., Lv L., 2018. Efficient removal of nickel(II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane. Water Res., 143, 87–98. DOI: 10.1016/j.watres.2018.06.031.
- 21. Lota K., Swoboda P., Acznik I., Sierczyńska A., Mańczak R., Kolanowski Ł., Lota G., 2020. Electrochemical properties of modified negative electrode for Ni–MH cell. Curr. Appl. Phys., 20, 106–113. DOI: 10.1016/j.cap.2019.10.014.
- 22. Mehdi B., Belkacemi H., Brahmi-Ingrachen D., Braham L.A., Muhr L., 2022. Study of nickel adsorption on NaCl-modified natural zeolite using response surface methodology and kinetics modelling. Groundwater Sustainable Dev., 17, 100757. DOI: 10.1016/j.gsd.2022.100757.
- 23. Milh H., Van Eyck K., Bastiaens B., De Laet S., Leysen D., Cabooter D., Dewil R., 2020. Predicting residua adsorbable organic halides concentrations in industrial wastewater using typical wastewater parameters. Water, 12, 1653. DOI: 10.3390/w12061653.
- 24. Mondal S.K., Beriya M.K., Saha P., 2019. Separation and recovery of nickel and zinc from synthetic wastewater using supported liquid membranes with in situ electrodeposition. Ind. Eng. Chem. Res., 58, 9970–9987. DOI: 10.1021/acs.iecr.9b01352.
- 25. Mousavi H.Z., Seyedi S., 2011. Nettle ash as a low cost adsorbent for the removal of nickel and cadmium from wastewater. Int. J. Environ. Sci. Technol., 8, 195–202. DOI: 10.1007/BF03326209.
- 26. Noman E., Al-Gheethi A., Radin Mohamed R.M.S, Al-Sahari M., Hossain M.S., Vo D.V.N., Naushad M., 2022. Sustainable approaches for nickel removal from wastewater using bacterial biomass and nanocomposite adsorbents: A review. Chemosphere, 291, 132862. DOI: 10.1016/j.chemosphere.2021.132862.
- 27. Pillot C., 2014. HEV, P-HEV and EV market – Impact on the battery business. 14th European Lead Battery Conference Proceedings. Edinburgh, UK, 9–12 September 2014.
- 28. Ramírez Calderón O.A., Abdeldayem O.M., Pugazhendhi A., 2020. Current updates and perspectives of biosorp- tion technology: an alternative for the removal of heavy metals from wastewater. Curr. Pollut. Rep., 6, 8–27. DOI: 10.1007/s40726-020-00135-7.
- 29. Rico I.L.R., Carrazana R.J.C., Karna N.K., Iáñez-Rodríguez I., de Hoces M.C., 2018. Modeling the mass transfer in biosorption of Cr(VI) y Ni(II) by natural sugarcane bagasse. Appl. Water Sci., 8, 55. DOI: 10.1007/s13201-018-0692-z.
- 30. Rzelewska Piekut M., Regel-Rosocka M., 2021. Liquid membranes for separation of metal ions from wastewaters. Phys. Sci. Rev., 20210049. DOI: 10.1515/psr-2021-0049.
- 31. Sadegh H., Ali G.A.M., 2018. Potential applications of nanomaterials in wastewater treatment: nanoadsorbents performance, In: Hussain A., Ahmed S. (Eds.), Advanced Treatment Techniques for Industrial Wastewater. IGI Global, 51–61. DOI: 10.4018/978-1-5225-5754-8.ch004.
- 32. Schlögl S., Diendorfer P., Baldermann A., Vollprecht D., 2022. Use of industrial residues for heavy metals immobilization in contaminated site remediation: a brief review. Int. J. Environ. Sci. Technol.. DOI: 10.1007/s13762-022-04184-x.
- 33. Song M., Hu X., Gu T., Zhang W.X., Deng Z., 2022. Nanocelluloses affixed nanoscale Zero-Valent Iron (nZVI) for nickel removal: Synthesis, characterization and mechanisms. J. Environ. Chem. Eng., 10, 107466. DOI: 10.1016/j.jece.2022.107466.
- 34. Stevens M., Batlokwa B., 2017. Removal of Nickel (II) and Cobalt (II) from wastewater using vinegar-treated eggshell waste biomass. J. Water Resour. Prot., 9, 931-944. DOI: 10.4236/jwarp.2017.98062. Un U.T., Ocal S.E., 2015. Removal of heavy metals (Cd, Cu, Ni) by electrocoagulation. Int. J. Environ. Sci. Dev., 6, 425–429. DOI: 10.7763/IJESD.2015.V6.630.
- 35. Un U.T., Ocal S.E., 2015. Removal of heavy metals (Cd, Cu, Ni) by electrocoagulation. Int. J. Environ. Sci. Dev., 6, 425–429. DOI: 10.7763/IJESD.2015.V6.630
- 36. van Hullebusch E.D., Peerbolte A., Zandvoort M.H, Lens P.N., 2005. Sorption of cobalt and nickel on anaerobic granular sludges: isotherms and sequential extraction. Chemosphere, 58, 493–505. DOI: 10.1016/j.chemosphere.2004.09.017
- 37. Vishnu D, Dhandapani B., Panchamoorthy G.K., Vo D.V.N.,•Ramakrishnan S.R., 2021. Comparison of Surface-engineered superparamagnetic nanosorbents with low-cost adsorbents of cellulose, zeolites and biochar for the removal of organic and inorganic pollutants: a review. Environ. Chem. Lett., 19, 3181–3208. DOI: 10.1007/s10311-021-01201-2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b0055b7-f1ac-4f2d-8510-d8ea52b1cedb