PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tire rubber testing procedure over a wide range of strain rates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of the paper is to present the procedure allowing one to determine correct mechanical characteristics of a rubber material compressed within a wide range of strain rates. In order to obtain a satisfactory wide spectrum of material data, a number of tests were conducted both under low and high strain rates with the use of a universal strength machine and split Hopkinson pressure bar set-up equipped with polymethyl methacrylate and 7075- T6 alloy bars. During the investigations, the necessity of performing pre-compression tests and the problem of specimen geometry were pointed out as key methodical requirements to guarantee achieving valid experimental data both from quasi-static and high strain rate tests.
Rocznik
Strony
727--739
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
  • Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
  • Military University of Technology, Faculty of Mechatronics and Aviation, Warsaw, Poland
  • Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
Bibliografia
  • 1. Ackland K., Anderson C.H., Ngo T.D., 2013, Deformation of polyurea-coated steel plates under localised blast loading, International Journal of Impact Engineering, 51, 13-22
  • 2. Bacon C., 1998, An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar, Experimental Mechanics, 38, 242-249
  • 3. Baranowski P., Małachowski J., Janiszewski J., Wekezer J., 2016a, Detailed tyre FE modelling with multistage validation for dynamic analysis, Materials and Design, 96, 68-79
  • 4. Baranowski P., Małachowski J., Mazurkiewicz Ł., 2016b, Numerical and experimental testing of vehicle tyre under impulse loading conditions, International Journal of Mechanical Sciences, 106, 346-356
  • 5. Butt H.S.U, Xue P., 2013, Determination of the wave propagation coefficient of viscoelastic SHPB: Significance for characterization of cellular materials, International Journal of Impact Engineering, 74, 83-91
  • 6. Baranowski P., Malachowski J., 2015, Numerical study of selected military vehicle chassis subjected to blast loading in terms of tire strength improving, Bulletin of the Polish Academy of Sciences Technical Sciences, 3, 4, 1-12
  • 7. Baranowski P., Małachowski J., Niezgoda T., 2011, Numerical analysis of vehicle suspension system response subjected to blast wave, Applied Mechanics Materials, 82, 728-733
  • 8. Borkowski W., Motrycz G., 2012, Analysis of IED explosion on carrier road safety, Journal of KONES and Powertrain Transport, 19, 4, 75-82
  • 9. Casem D.T., Fourney W.L., Chang P., 2003, A polymeric split Hopkinson pressure bar instrumented with velocity gages, Experimental Mechanics, 43, 4, 420-427
  • 10. Chen W., Lu F., Zhou B., 2000, A quartz-crystal-embedded split Hopkinson pressure bar for soft materials, Experimental Mechanics, 40, 1, 1-6
  • 11. Chen W., Song B., 2010, Dynamic characterization of soft materials, Dynamic Failure of Materials and Structures, 1-28
  • 12. Chen W., Song B., 2011, Split Hopkinson (Kolsky) Bar, Design, Testing and Applications, Springer
  • 13. Chen W., Zhang B., Forrestal M.J., 1999, A split Hopkinson bar technique for low-impedance materials, Experimental Mechanics, 39, 81-85
  • 14. Cheng Z.Q., Crandall J.R., Pilkey W.D., 1998, Wave dispersion and attenuation in viscoelastic split Hopkinson pressure bar, Shock and Vibration, 5, 307-315
  • 15. D575-91 AS, 2001, Standard Test Methods for Rubber Properties in Compression, USA
  • 16. Duyle J.F., 1989, Wave Propagation in Structures – An FFT-Based Spectral Analysis Methodology, Springer-Verlag, New York
  • 17. Ellwood S., Griffiths L.-J., Parry D.J., 1982, Materials testing at high constant strain rates, Journal of Physics Engineering: Scientific Instruments, 15, 280-282
  • 18. Franz C.E., Follansbee P.S., Berman I., Schroeder J.W., 1984, High Energy Rate Fabrication, American Society of Mechanical Engineers, New York
  • 19. Gent A.N., 1994, Compression of rubber blocks, Rubber Chemistry and Technology, 67, 549-558
  • 20. Giovanola J.H., 1988, Adiabatic shear banding under pure shear loading: part I, Mechanics of Materials, 7, 59-71
  • 21. Gray III GT., 2000, ASM Handbook: Mechanical testing and evaluation, [In:] Materials Park, Kuhn H., Medlin D. (Edit.), OH: ASM International, 8, 939-1270
  • 22. Helnwein P., Liu C.H., Meschke G., Mang H.A., 1993, A new 3D finite element model for cord-reinforced rubber composites application to analysis of autobomile tires, Finite Elements in Analysis and Design, 4, 1-16
  • 23. Hopkinson B., 1904, The effect of momentary stress in metals, Proceedings of the Royal Society of London, 74, 498-507
  • 24. Hopkinson J., 1872, On the rapture of iron wire by a blow, Proceedings of the Manchester Literary and Philosophical Society, 1, 4-45
  • 25. Janiszewski J., 2012, Testing of Engineering Materials Under Dynamic Loading Conditions (in Polish), Military University of Technology, Warsaw
  • 26. Janiszewski J., Bużantowicz W., Baranowski P., 2016, Correction procedure of wave signals for a viscoelastic split Hopkinson pressure bar, Problems of Mechatronics: Armament, Aviation, Sefety Engineering, 7, 1, 17-30
  • 27. Kim J.H., Jeong H.Y., 2005. A study on the material properties and fatigue life of natural rubber with different carbon blacks, International Journal of Fatigue, 27, 263-272
  • 28. Kolsky H., 1953, Stress Waves in Solids, Oxford University Press, London
  • 29. Lindholm U.S., Yeakley L.M., 1968, High strain-rate testing: tension and compression, Experimental Mechanics, 8, 1, 1-9
  • 30. Malachowski J., Wesolowski M., Krason W., 2007, Computational study of transport aircraft landing gear during touchdown, Journal of KONES and Powertrain Transport, 13, 4, 187-195
  • 31. Meyers M.A., 1994, Dynamic Behaviour of Materials, Johs Wiley and Sons, INC, New YorkChichester-Brisbane-Toronto-Singapoure
  • 32. Nakajima Y., Takahashi F., 2002, Increase of frictional force of rubber block by uniform contact pressure distribution and its application to tire, Rubber Chemistry and Technology, 75, 589-604
  • 33. Nicholas T., 1981, Tensile testing of Materials at high rates of strain, Experimental Mechanics, 21, 5, 177-185
  • 34. Pouriayevali H., Shim V.P.W., 2012, A constitutive description of elastomer behaviour at high strain rates – A strain dependent relaxation time approach, International Journal of Impact Engineering, 47, 71-78
  • 35. Reid J.D., Boesch D.A., Bielenberg R.W., 2007, Detailed tire modeling for crash applications, International Journal of Crashworthines, 12, 5, 521-529
  • 36. Roland C.M., 2006, Mechanical behaviour of rubber at high strain rates, Rubber Chemistry and Technology, 79, 429-459
  • 37. Roland C.M., Fragiadakis D., Gamache R.M., 2010, Elastomer-steel laminate armor, Composite Structures, 92, 1059-1064
  • 38. Saintier N., Cailletaud G., Piques R., 2006, Multiaxial fatigue life prediction for a natural rubber, International Journal of Fatigue, 28, 530-539
  • 39. Song B., Chen, W., 2003, One-dimensional dynamic compressive behaviour of EPDM rubber, Journal of Engineering Materials and Technology, 125, 294-301
  • 40. Song B., Chen W., 2005, Split Hopkinson pressure bar techniques for characterizing soft materials, Latin American Journal of Solids and Structures, 2, 113-152
  • 41. Sridharan K., Sivaramakrishnan R., 2013, Compressive and shear analysis of rubber block under large strain, American Journal of Applied Sciences, 10, 7, 681-687
  • 42. Szurgott P., Gotowicki P., Niezgoda T., 2012, Numerical analysis of a shaped rail pad under selected static load, Journal of KONES and Powertrain Transport, 19, 1, 407-414
  • 43. Wang L., Labibes Z., Azari Z., Pluvinage G., 1994, Generalization of split Hopkinson bar technique to use viscoelastic bars, International Journal of Impact Engineering, 15, 669-686
  • 44. Zhao H., Gary G., 1995, A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar. Application to experimental techniques, Journal of the Mechanics and Physics of Solids, 43, 8, 1335-1348
  • 45. Zhao H., Gary G., Klepaczko J.R., 1997, On the use of a viscoelastic split Hopkinson pressure bar, International Journal of Impact Engineering, 19, 4, 319-330
  • 46. Zine A., Benseddiq N., Nait Abdelaziz M., 2006, Rubber fatigue life under multiaxial loading: numerical and experimental investigations, International Journal of Fatigue, 33, 1360-1368
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3afd56ab-e52e-4ad2-b6d2-8b14920fd8ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.