PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lower ionospheric electron density changes following lightning discharges

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of lightning-induced electromagnetic (EM) waves on electron density (Ne) of the lower ionosphere is calculated by using the four-component Glukhov–Pasko–Inan (GPI) model which is modified by including two-body attachment reactions and associative detachment with negative ions of active species (namely, O and N atoms). As a result of the calculations, it is seen that three-body attachment reactions take place at about 50–73 km altitudes, associative detachment takes place at approximately 73–85 km altitudes and two-body attachment reactions take place at approximately 85–95 km altitudes on the electron density. While the effect on electron density of electric field of lightning-induced EM wave is weak at altitudes where associative detachment is effective, it is strong at altitudes where two-body attachment reactions are effective. Also, it is shown that the electron density increases up to approximately 5.5 times when compared with the background density values due to electrons occurring as a result of associative detachment with negative ions of active species.
Czasopismo
Rocznik
Strony
731--738
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
  • Faculty of Education, Mus Alparslan University, 49250 Mus, Turkey
autor
  • Department of Physics, Faculty of Sciences, Firat University, 23119 Elazig, Turkey
autor
  • Department of Electronics and Automation, Vocational School, Mus Alparslan University, 49100 Mus, Turkey
Bibliografia
  • 1. Aleksandrov N (1988) Three-body electron attachment to a molecule. Sov Phys Uspekhi 31:101
  • 2. Atıcı R, Güzel E, Canyılmaz M, Sağır S (2016) The effect of lightning-induced electromagnetic waves on the electron temperatures in the lower ionosphere. Kuwait J Sci 43:143–149
  • 3. Barrington-Leigh CP (2000) Fast photometric imaging of high altitude optical flashes above thunderstorms. Doctoral dissertation, Stanford University
  • 4. Belova E, Pashin A, Lyatsky W (1995) Passage of a powerful HF radio wave through the lower ionosphere as a function of initial electron density profiles. J Atmos Terr Phys 57:265–272
  • 5. Canyılmaz M, Atıcı R, Güzel E (2013) The Effect of Earth’s Magnetic Field on the HF Radio Wave Modes at the Heated Subionosphere. Acta Phys Pol A 123:786–790
  • 6. Cho M, Rycroft MJ (2001) Non-uniform ionisation of the upper atmosphere due to the electromagnetic pulse from a horizontal lightning discharge. J Atmos Solar Terr Phys 63:559–580
  • 7. Dowden R, Brundell J, Rodger C, Mochanov O, Lyons W, Nelson T (1996) The structure of red sprites determined by VLF scattering. IEEE Antennas Propag Mag 38:7–15
  • 8. Farrell WM, Goldberg RA, Blakeslee RJ, Desch MD, Mach DM (2006) Radiation impedance over a thunderstorm. Radio Sci 41(3):RS3008. https://doi.org/10.1029/2004RS003217
  • 9. Fuks I, Shubova R, Martynenko S (1997) Lower ionosphere response to conductivity variations of the near-earth atmosphere. J Atmos Solar Terr Phys 59:961–965
  • 10. Füllekrug M, Mareev EA, Rycroft MJ (2006) Sprites, elves and intense lightning discharges. Springer, Netherlands
  • 11. Glukhov V, Pasko V, Inan U (n) Relaxation of transient lower ionospheric disturbances caused by lightning-whistler-induced electron precipitation bursts. J Geophys Res Space Phys 97:16971–16979
  • 12. Gordillo-Vázquez FJ (2008) Air plasma kinetics under the influence of sprites. J Phys D Appl Phys 41:234016
  • 13. Gordillo-Vázquez F, Luque A (2010) Electrical conductivity in sprite streamer channels. Geophys Res Lett 37:L16809. https://doi.org/10.1029/2010GL044349
  • 14. Grimalsky V, Hayakawa M, Ivchenko V, Rapoport YG, Zadorozhnii V (2003) Penetration of an electrostatic field from the lithosphere into the ionosphere and its effect on the D-region before earthquakes. J Atmos Solar Terr Phys 65:391–407
  • 15. Gurevich A (1978) Nonlinear phenomena in the ionosphere. Springer, New York, Heildelberg, Berlin
  • 16. Haldoupis C, Mika Á, Shalimov S (2009) Modeling the relaxation of early VLF perturbations associated with transient luminous events. J Geophys Res Space Phys 114:A00E04. https://doi.org/10.1029/2009JA014313
  • 17. Haldoupis C, Cohen M, Cotts B, Arnone E, Inan U (2012) Long-lastingD-region ionospheric modifications, caused by intense lightning in association with elve and sprite pairs. Geophys Res Lett 39:L16801. https://doi.org/10.1029/2012GL052765
  • 18. Hedin AE (1991) Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res Space Phys 96:1159–1172
  • 19. Inan US, Cummer SA, Marshall RA (2010) A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. J Geophys Res Space Phys 115:A00E36. https://doi.org/10.1029/2009JA014775
  • 20. Inan US, Bell TF, Rodriguez JV (1991) Heating and ionization of the lower ionosphere by lightning. Geophys Res Lett 18:705–708
  • 21. Inan US, Rodriguez JV, Lev-Tov S, Oh J (1992) Ionospheric modification with a VLF transmitter. Geophys Res Lett 19:2071–2074
  • 22. Inan US, Sampson WA, Taranenko YN (1996) Space–time structure of optical flashes and ionization changes produced by lighting-EMP. Geophys Res Lett 23:133–136
  • 23. Kassa M, Havnes O, Belova E (2005) The effect of electron bite-outs on artificial electron heating and the PMSE overshoot. Ann Geophys 23:3633–3643
  • 24. Kero A, Bösinger T, Pollari P, Turunen E, Rietveld M (2000) First EISCAT measurement of electron-gas temperature in the artificially heated D-region ionosphere. Ann Geopyhs 18:1210–1215
  • 25. Kotovsky D, Moore R (2016) Photochemical response of the nighttime mesosphere to electric field heating—recovery of electron density enhancements. Geophys Res Lett 43:952–960
  • 26. Lehtinen NG, Inan US (2007) Possible persistent ionization caused by giant blue jets. Geophys Res Lett 34:L08804. https://doi.org/10.1029/2006GL029051
  • 27. Liu N (2012) Multiple ion species fluid modeling of sprite halos and the role of electron detachment of O− in their dynamics. J Geophys Res: Space Phys 117:A03308. https://doi.org/10.1029/2011JA017062
  • 28. Luque A, Gordillo-Vázquez F (2012) Mesospheric electric breakdown and delayed sprite ignition caused by electron detachment. Nat Geosci 5:22–25
  • 29. Marshall RA, Inan US, Chevalier T (2008) Early VLF perturbations caused by lightning EMP-driven dissociative attachment. Geophys Res Lett 35:L21807. https://doi.org/10.1029/2008GL035358
  • 30. Marshall RA, Inan US, Glukhov V (2010) Elves and associated electron density changes due to cloud-to-ground and in-cloud lightning discharges. J Geophys Res Space Phys 115:A00E17. https://doi.org/10.1029/2009JA014469
  • 31. Marshall RA (2012) An improved model of the lightning electromagnetic field interaction with the D-region ionosphere. J Geophys Res Space Phys 117:A03316. https://doi.org/10.1029/2011JA017408
  • 32. Martynenko S, Fuks I, Shubova R (1996) Ionospheric electric-field influence on the parameters of VLF signals connected with nuclear accidents and earthquakes. J Atmos Electr 16:259–269
  • 33. Moosavi S, Moini R, Sadeghi S, Kordi B (2011) Application of the nonlinear antenna theory model to a tall tower struck by lightning for the evaluation of return stroke channel current and radiated electromagnetic fields. J Geophys Res Atmos 116:D11118. https://doi.org/10.1029/2010JD014684
  • 34. Nagano I, Yagitani S, Miyamura K, Makino S (2003) Full-wave analysis of elves created by lightning-generated electromagnetic pulses. J Atmos Solar Terr Phys 65:615–625
  • 35. Palit S, Basak T, Mondal S, Pal S, Chakrabarti S (2013) Modeling of very low frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry. Atmos Chem Phys 13:9159–9168
  • 36. Pasko V, Inan U, Bell T, Taranenko YN (1997) Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J Geophys Res Space Phys 102:4529–4561
  • 37. Poulsen WL, Inan US, Bell TF (1993) A multiple-mode three-dimensional model of VLF propagation in the Earth-ionosphere waveguide in the presence of localized D region disturbances. J Geophys Res 98:1705–1717
  • 38. Rapoport Y, Grimalsky V, Hayakawa M, Ivchenko V, Juarez-R D, Koshevaya S, Gotynyan O (2004) Change of ionospheric plasma parameters under the influence of electric field which has lithospheric origin and due to radon emanation. Phys Chem Earth Parts A/B/C 29:579–587
  • 39. Rapoport YG, Gotynyan O, Ivchenko V, Hayakawa M, Grimalsky V, Koshevaya S, Juarez-R D (2006) Modeling electrostatic-photochemistry seismoionospheric coupling in the presence of external currents. Phys Chem Earth Parts A/B/C 31:437–446
  • 40. Richards JA (2008) Radio wave propagation: an introduction for the non-specialist. Springer, Berlin, Heidelberg
  • 41. Rietveld M, Kopka H, Stubbe P (1986) D-region characteristics deduced from pulsed ionospheric heating under auroral electrojet conditions. J Atmos Terr Phys 48:311–326
  • 42. Rodger CJ, Wait JR, Dowden RL (1998) Scattering of VLF from an experimentally described sprite. J Atmos Solar Terr Phys 60:765–769
  • 43. Rodriguez J (1994) Modification of the Earth's Ionosphere by Very-Low-Frequency Transmitters. Doctoral dissertation, Stanford University
  • 44. Rodriguez JV, Inan US (1994) Electron density changes in the nighttime D region due to heating by very-low-frequency transmitters. Geophys Res Lett 21:93–96
  • 45. Rodriguez JV, Inan US, Bell TF (1992) D region disturbances caused by electromagnetic pulses from lightning. Geophys Res Lett 19:2067–2070
  • 46. Rowland H, Fernsler R, Huba J, Bernhardt P (1995) Lightning driven EMP in the upper atmosphere. Geophys Res Lett 22:361–364
  • 47. Salem MA, Liu N, Rassoul HK (2015) Effects of small thundercloud electrostatic fields on the ionospheric density profile. Geophys Res Lett 42:1619–1625
  • 48. Schunk R, Nagy A (2009) Ionospheres: physics, plasma physics, and chemistry. Cambridge University Press, New York
  • 49. Taranenko YN, Inan U, Bell T (1993a) The interaction with the lower ionosphere of electromagnetic pulses from lightning: excitation of optical emissions. Geophys Res Lett 20:2675–2678
  • 50. Taranenko YN, Inan US, Bell TF (1993b) Interaction with the lower ionosphere of electromagnetic pulses from lightning-Heating, attachment, and ionization. Geophys Res Lett 20:1539–1542
  • 51. Valdivia J, Milikh G, Papadopoulos K (1997) Red sprites: lightning as a fractal antenna. Geophys Res Lett 24:3169–3172
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3af51bdf-abc3-4f3e-840a-90dfcf533a8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.