PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Solid-state welding of ultrafine grained copper rods

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article focuses on the Direct Drive Rotary Friction Welding of ultrafine-grained copper rods, which feature increased mechanical properties and good electrical properties, yet are limited in size. The use of UFG metals is often limited by the too small dimensions of semi-finished elements produced by SPD methods. Therefore, the production of finished machine parts from UFG metals is currently economically unjustified. Dismissal of dimensional limitations can be done by introducing joining to technological processes. The proposed joining method does not lead to a melting of the material in the joining zone or excessive degradation of the UFG microstructure. To obtain the best results, the research used the method of low-energy welding of two kinds of specimens: with a flat or a conical contact surface. In the article, the authors present, by means of metallographic microsections and microhardness measurements, the influence of rotational speed, welding pressure and conical shape contact surface on the quality of the obtained joints. The conducted research made it possible to obtain good quality joints whose microhardness is reduced only by about 10% in comparison with the base material and the tensile strength dropped from only 397–358 MPa.
Rocznik
Strony
31--43
Opis fizyczny
Bibliogr. 41 poz., rys., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Production Engineering, Narbutta 85, 02-524 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Production Engineering, Narbutta 85, 02-524 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Production Engineering, Narbutta 85, 02-524 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Production Engineering, Narbutta 85, 02-524 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw, Poland
Bibliografia
  • [1] Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT. Fundamentals of superior properties in bulk nanoSPD materials. Mater Res Lett. 2016. https:// doi. org/ 10. 1080/ 21663 831. 2015. 10605 43.
  • [2] Segal VM. The method of material preparation for subsequent working. Patent no. 575892. USSR. 1977.
  • [3] Langdon TG. The impact of bulk nanostructured materials in modern research. Rev Adv Mater Sci. 2010;25:11–5.
  • [4] Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI. Plastic working of metals by simple shear. Russ Metall. 1981;1:99–105.
  • [5] Rosochowski A. Severe plastic deformation technology. Dunbeath: Whittles Publishing; 2017.
  • [6] Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu Y. Producing bulk ultrafine-grained materials by severe plastic deformation. J Miner Met Mater Soc. 2006. https:// doi. org/ 10. 1007/ s11837- 006- 0213-7.
  • [7] Mathieu JP, Suwas S, Eberhardt A, Toth LS, Moll P. A new design for equal channel angular extrusion. J Mater Process Technol. 2006. https:// doi. org/ 10. 1016/j. jmatp rotec. 2005. 11. 007.
  • [8] de Filho AM, Prados EF, Valio GT, Rubert JB, Sordi VL, Ferrante M. Severe plastic deformation by equal channel angular pressing: Product quality and operational details. Mater Res. 2011. https:// doi. org/ 10. 1590/ S1516- 14392 01100 50000 45.
  • [9] Ferrasse S, Segal VM, Alford F, Kardocus J, Strothers S. Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries. Mater Sci Eng A. 2008. https:// doi. org/ 10. 1016/j. msea. 2007. 04. 133.
  • [10] Ma A, Zhu C, Chen J, Jiang J, Song D, Ni S, He Q. Grain refinement and high-performance of equal-channel angular pressed Cu-Mg alloy for electrical contact wire. Metals (Basel). 2014. https:// doi. org/ 10. 3390/ met40 40586.
  • [11] Ambroziak A, Korzeniowski M, Kustroń P, Winnicki M. Friction welding of niobium and tungsten pseudoalloy joints. Int J Refract Met H. 2011. https:// doi. org/ 10. 1016/j. ijrmhm. 2011. 02. 010.
  • [12] Orłowska M, Olejnik L, Campanella D, Buffa G, Morawiński Ł, Fratini L, Lewandowska M. Application of linear friction welding for joining ultrafine grained aluminium. J Manuf Process. 2020. https:// doi. org/ 10. 1016/j. jmapro. 2020. 05. 012.
  • [13] Morawiński Ł, Chmielewski T, Olejnik L, Buffa G, Campanella D, Fratini L. Welding abilities of UFG metals. AIP Conf Proc. 2018. https:// doi. org/ 10. 1063/1. 50348 85.
  • [14] Sahin M, Balasubramanian N, Misirli C, Erol Akata H, Can Y, Ozel K. On properties at interfaces of friction welded near-nanostructured Al 5083 alloys. Int J Adv Manuf Technol. 2012;61:935–43. https:// doi. org/ 10. 1007/ s00170- 011- 3775-7.
  • [15] Sahin M, Erol Akata H, Ozel K. An experimental study on joining of severe plastic deformed aluminium materials with friction welding method. Mater Design. 2008. https:// doi. org/ 10. 1016/j. matdes. 2006. 11. 004.
  • [16] Skowrońska B, Chmielewski T, Pachla W, Kulczyk M, Skiba J, Presz W. Friction weldability of UFG 316L stainless steel. Arch Metall Mater. 2019. https:// doi. org/ 10. 24425/ amm. 2019. 129494.
  • [17] Salahi S, Yapici GG. Fatigue behavior of friction stir welded joints of pure copper with ultra-fine grains, 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM15. Proced Mater Sci. 2015. https:// doi. org/ 10. 1016/j. mspro. 2015. 11. 097.
  • [18] Smirnov I, Konstantinov A. Influence of ultrafine-grained structure produced by equal-channel angular pressing on the dynamic response of pure copper. Proced Struct Integr. 2018. https:// doi. org/ 10. 1016/j. prostr. 2018. 12. 280.
  • [19] Lugo N, Llorca-Isern N, Sunol JJ, Cabrera JM. Thermal stability of ultrafine grains size of pure copper obtained by equal-channel angular pressing. J Mater Sci. 2010. https:// doi. org/ 10. 1007/ s10853- 009- 4139-7.
  • [20] Goto M, Teshima N, Han SZ, Euh K, Yakushiji T, Kim SS, Lee J. High-cycle fatigue strength and small-crack growth behavior of ultrafine-grained copper with post-ECAP annealing. Eng Fract Mech. 2013. https:// doi. org/ 10. 1016/j. engfr acmech. 2013. 07. 018.
  • [21] Goto M, Han SZ, Yakushiji T, Kim SS, Lim CY. Fatigue strength and formation behavior of surface damage in ultrafine grained copper with different non-equilibrium microstructures. Int J Fatigue. 2008. https:// doi. org/ 10. 1016/j. ijfat igue. 2007. 11. 001.
  • [22] Collini LL. Fatigue crack growth resistance of ECAPed ultrafine-grained copper. Eng Fract Mech. 2010. https:// doi. org/ 10. 1016/j. engfr acmech. 2010. 02. 011.
  • [23] Lipinńska M, Olejnik L, Lewandowska M. The influence of an ECAP-based deformation process on the microstructure and properties of electrolytic tough pitch copper. J Mater Sci. 2018. https:// doi. org/ 10. 1007/ s10853- 017- 1814-y.
  • [24] Sanusi KO, Afolabi AS, Muzenda E. Microstructure and mechanical properties of ultra-fine grained copper processed by equal channel angular pressing technique. In: Proceedings of the World Congress on Engineering and Computer Science. 2014; Vol II WCECS 2014, 22–24 October, 2014, San Francisco, USA.
  • [25] Afsari A, Ranaei MA. Equal channel angular pressing to produce ultrafine pure copper with excellent electrical and mechanical properties. Int J Nanosci Nanotechnol. 2014;10(4):215–22.
  • [26] Tao S, Yu-long L, Kui X, Feng Z, Ke-shi Z, Yuan-yong L. The effect of temperature on mechanical behavior of ultrafine-grained copper by equal channel angular pressing. Mater Sci Eng A. 2010. https:// doi. org/ 10. 1016/j. msea. 2010. 05. 046.
  • [27] Jiang Q, Li X. Effect of pre-annealing treatment on the compressive deformation and damage behavior of ultrafine-grained copper. Mater Sci Eng A. 2012. https:// doi. org/ 10. 1016/j. msea. 2012. 03. 024.
  • [28] Skowrońska B, Siwek P, Chmielewski T, Golański D. Friction welding of ultrafine grained 316L steel. Weld Technol Rev. 2018. https:// doi. org/ 10. 26628/ ps. v90i5. 917.
  • [29] Ciemiorek M, Pawliszak Ł, Chromiński W, Olejnik L, Lewandowska M. Enhancing the electrical conductivity of electrolytic tough pitch copper rods processed by incremental equal channel angular pressing. Metall Mater Trans A. 2020. https:// doi. org/ 10. 1007/ s11661- 020- 05818-w.
  • [30] Maalekian M. Friction welding–critical assessment of literature. Sci Technol Weld Join. 2007. https:// doi. org/ 10. 1179/ 17432 9307X 249333.
  • [31] Rosochowski A, Olejnik L. Numerical and physical modelling of plastic deformation in 2-turn equal channel angular extrusion. J Mater Process Technol. 2002. https:// doi. org/ 10. 1016/ S0924-0136(02) 00339-4.
  • [32] Vinogradov A. Mechanical properties of ultra fine-grained metals: new challenges and perspectives. Adv Eng Mater. 2015. https:// doi. org/ 10. 1002/ adem. 20150 0177.
  • [33] Alves EP, Toledo RC, Piorino Neto F, Botter FG, An CY. Experimental thermal analysis in rotary friction welding of dissimilar materials. J Aerosp Technol Manag. 2019. https:// doi. org/ 10. 5028/ jatm. v11. 1068.
  • [34] Pinheiro MA, Bracarense AQ. Influence of initial contact geometry on mechanical properties in friction welding of dissimilar materials aluminum 6351 T6 and SAE 1020 steel. Adv Mater Sci Eng. 2019. https:// doi. org/ 10. 1155/ 2019/ 17594 84.
  • [35] Venkateswarlu D, Mandal NR, Mahapatra MM, Harsh SP. Tool design effects for FSW of AA7039. Weld J. 2013;92(2):41–7.
  • [36] Kobayashi C, Sakai T, Belyakov A, Miura H. Ultrafine grain development in copper during multidirectional forging at 195 K. Philos Mag Lett. 2007. https:// doi. org/ 10. 1080/ 09500 83070 15660 16.
  • [37] Xua N, Song Q, Bao Y, Jiang Y, Shen J. Achieving good strength-ductility synergy of friction stir welded Cu joint by using large load with extremely low welding speed and rotation rate. Mater Sci Eng A. 2017. https:// doi. org/ 10. 1016/j. msea. 2017. 01. 052.
  • [38] Xu N, Song Q, Bao Y, Jiang Y, Shen J. Achieving good strength-ductility synergy of friction stir welded Cu joint by using large load with extremely low welding speed and rotation rate. Mater Sci Eng A. 2017. https:// doi. org/ 10. 1016/j. msea. 2017. 01. 052.
  • [39] Xue P, Xiao BL, Zhang Q, Ma ZY. Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling. Scr Mater. 2011. https:// doi. org/ 10. 1016/j. scrip tamat. 2011. 02. 019.
  • [40] Khodaverdizadeh H, Mahmoudi A, Heidarzadeh A, Nazari E. Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints. Mater Des. 2012. https:// doi. org/ 10. 1016/j. matdes. 2011. 09. 058.
  • [41] Xie GM, Ma ZY, Geng L. Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper. Scr Mater. 2007. https:// doi. org/ 10. 1016/j. scrip tamat. 2007. 03. 048.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3af17d4c-672e-4173-8599-1fe0589d3026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.