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Most wind turbine blades are made of laminated composite materials. The mechanical prop-
erties of the material and the layup orientation influence the blade stiffness and, therefore,
turbine performance. The bend-twist coupling effect, a consequence of the stacking sequence,
can be used for passive control of the pitch angle, which in turn can improve the turbine
performance. In this work, a surrogate-based optimization strategy which uses finite element
simulation and radial basis functions is employed to optimize the stacking sequence of the
blade laminate of a small wind turbine, aiming to improve the power coefficient.
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1. Introduction

Wind turbines convert wind energy into electricity. Aerodynamic forces generate torque on the
turbine rotor, and this mechanical power is transformed into electricity by an electric genera-
tor. Although most wind turbines consist essentially of the same subsystems, those with lower
generating capacity are simpler and do not have active control of the blade angle of attack (see
Fig. 1). The ability to control this angle affects turbine performance as it allows the blade to
be adjusted according to the wind direction and speed so that the turbine can work close to an
optimum position most of the time (Manwell et al., 2009).

Fig. 1. Representation of a section of a turbine blade

To actively control the angle of attack of the blade, mechanisms and control systems are
needed. Because of this, controlling the angle of attack is not feasible in smaller-capacity turbines
as it would require most of the energy produced by the turbine. An alternative is to use a bend-
-twist coupling and perform this control passively, taking advantage of the intrinsic deformation
of the turbine blade under aerodynamic loads. The bend-twist coupling is an inherent charac-
teristic of anisotropic materials, such as laminated composites, and can be used for aeroelastic
tailoring of wind turbine blades made of composite materials (Veers et al., 1998).
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Several studies have evaluated the potential for applying aeroelastic tailoring to wind turbine
blades. Veers et al. (1998) concluded that aerodynamic loads on a wind turbine blade can be
reduced by twisting the blade in the direction that reduces the loads, or towards stall. Although
this initially reduces the maximum power generated by the turbine, the reduction in load allows
the rotor diameter to be increased, in turn increasing the power over the entire power curve and
bringing the maximum power to its original value. The authors concluded that application of
aeroelastic tailoring can increase the power generated by a turbine by up to 5% to 10% over a
year compared with a turbine with blades made from an isotropic material.

Other authors, such as Maheri et al. (2007) and Barr and Jaworski (2019), also obtained
improvements in the power curve by applying the same principle as that used by Veers et al.
(1998). Maheri et al. (2007) achieved an increase of around 15.5%, while Barr and Jaworski
(2019) reported an increase of 15% in the maximum power generated at certain speeds.

Adopting a different approach, Deilmann (2009) used aeroelastic tailoring to determine the
optimum angle of attack regardless of the wind speed to which the turbine is subjected. The
analysis was performed for wind speeds of 5 to 11m/s, and an improvement in power coefficient
of up to 6% was achieved. The author concluded that for wind speeds greater than 11m/s
(nominal design wind speed) even greater improvements could be achieved. However, above the
nominal design speed an increase in aerodynamic loads is observed, an undesirable effect which
can be critical for large turbines.

For all these advantages, the aeroelastic tailoring to be realized requires prior assessment of
the behavior of the laminated composite blade. Because evaluation of the design of laminated
composite structures is complex and usually has high computational costs, optimization of the
design of these structures is usually done with surrogate models (also called metamodels). A
metamodel is a simplified surrogate for a detailed model of a phenomenon that has a relatively
good accuracy and can therefore be used as a substitute for high-computational-cost functions
in the optimization process as it can be evaluated more quickly. Construction of a surrogate
model initially requires a design of experiments (DoE) strategy. DoE is a technique that helps
to determine values of the design variables used to build the surrogate model (Wang and Shan,
2007).

By combining finite element simulation, DoE, surrogate modeling and optimization algo-
rithm, a design with more efficient, higher-performance laminated structures can be produced.
The present work, therefore, intends to develop, apply and evaluate a low-computational-cost
optimization methodology to increase the power coefficient of composite wind turbines using
radial basis functions (RBFs) as the surrogate model (metamodel).

2. Wind turbine blade optimization procedure

Wang and Shan (2007) proposed a metamodeling-based optimization process that follows the
sequence of steps shown in Fig. 2. This sequence is used in the present study to optimize a wind
turbine blade. The details of each step are explained in Subsections 2.1 to 2.5.

Fig. 2. Flowchart of the metamodeling-based optimization process
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2.1. Problem definition

In this work, the wind turbine blade model developed by Leite and Ferreira (2019) is used as
the reference, and a corresponding finite element model is generated using Abaqus commercial
code. The finite element model is used to simulate torsion generated in the wind turbine blade
for different layup configurations. The finite element employed in the numerical model of the
blade is the four-node shell (S4R), and static analysis is performed. Newton’s method is used to
solve the nonlinear system of equations.
Each ply is a unidirectional carbon-epoxy prepreg lamina. The linear elastic regime of the

material is considered, but the structure can undergo large displacements (geometric nonlinear
analysis). The elastic modulus in the fiber direction E1 is 121GPa; the transverse elastic modulus
E2 is 8.6 GPa; the shear modulus in the 1-2 plane G12 is 4.7GPa; and the Poisson ratio in the
plane 1-2 ν12 is 0.27.
The wind turbine blade is based on the NACA 23018 airfoil. The camber line of the airfoil

was used to construct a thin blade on which seven plies of 0.57mm in thickness were stacked.
The orientations of the layers are the input variables for the analysis. The turbine blade has a
length of 0.75m although the useful area starts at a radial distance of 0.15m. Table 1 shows the
chord length and the geometric torsion angle at different radial positions.

Table 1. Geometric characteristics of the wind turbine blade

Radial position Chord length Geometric torsion
[m] [m] angle [◦]

0.15 0.16 20.1

0.20 0.14 14.7

0.26 0.12 10.0

0.32 0.10 6.7

0.38 0.09 4.3

0.45 0.08 2.5

0.51 0.07 1.0

0.57 0.06 −0.1
0.63 0.05 −1.0
0.69 0.05 −1.8
0.75 0.05 −2.5

Two simultaneous loads are applied to the blade. First, a centrifugal load generated by
rotation of the blade is applied over the whole airfoil. This load is given by

dFc = dmΩ
2r (2.1)

where dm is the mass differential, r is the radius and Ω the angular speed, which is given by
the following equation proposed by Leite and Ferreira (2019)

Ω =
√
1467.95U + 387.67 − 19.69 (2.2)

with U being the wind speed, given in m/s, and Ω given in rad/s.
The second one is the aerodynamic load dFn, which is obtained using the blade element

momentum theory (BEMT). This theory can also be used to calculate the power and efficiency
of the turbine. The BEMT is a combination of two different theories: the momentum conservation
principle and the blade element theory (Manwell et al., 2009).
The BEMT theory formulates the equations for the torque dQ and thrust dFn. The wind

turbine blade is divided into N sections, and the normal force and torque in each section are
given respectively by
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dFN = σ
′πρ
U2(1− a2)
sin2 ϕ

(Cl cosϕ− Cd sinϕ)r dr (2.3)

and

dQ = σ′πρ
U2(1− a2)
sin2 ϕ

(Cl cosϕ− Cd sinϕ)r2 dr (2.4)

where ρ is density of the fluid, a – axial induction factor, Cl – lift coefficient, Cd – drag coefficient,
r – distance from the wind turbine axis and ϕ is the angle of relative wind. The solidity of the
chord σ′ is defined as

σ′ =
Bc

2πr′
(2.5)

where B is the number of blades and c the chord length (Manwell et al., 2009).
In Eqs. (2.3) and (2.4), the angle ϕ is directly proportional to the angle of attack, and the

variables Cl and Cd are also affected by this angle. Their values are obtained by aerodynamic
simulation in open software QBlade and are also affected by the Reynolds number of the flow.
Figure 3 shows the finite element model created for the mechanical analysis of the wind turbine
blade with its loads and constraints. The mesh has 588 elements, obtained after a convergence
test until the difference between displacements of the midpoint of the tip is less than 1% in
two consecutive iterations. The aerodynamic load is distributed over the airfoil chord as the
equivalent pressure on each finite element in the direction of the wind.

Fig. 3. Loads and constraints of the finite element model

Using BEMT, the turbine power is given by

P =

R∫

r

Ω dQ (2.6)

where r is the internal radius and R the external radius of the wind turbine blade.
Dividing Eq. (2.6) by the power available in the flow gives the power coefficient of the

turbine Cp

Cp =
P

Pflow
=

R∫

r
Ω dQ

1
2ρπR

2U3
(2.7)

According to Betz’s law, the maximum possible value for Cp is 0.593 (Almeida, 2009).
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2.2. Analysis of variables

Reinforced fiber laminated composite materials are some of the most commonly used ma-
terials for wind turbine blades. In these composites, layers with fibers in different orientations
are stacked and bonded to each other to give high mechanical strength and stiffness in different
directions. A suitable stacking sequence of plies can be selected to obtain the desired properties
for a particular application (Reddy, 2003).
The equation that represents how the in-plane loads per unit length N and moments per

unit lengthM relate to the in-plane strains ε and midplane curvature κ of a composite laminate
is
{

N
M

}

=

[

A B
B D

]{

ε
κ

}

(2.8)

The submatrices A, B and D form the stiffness matrix of the laminate (the so-called ABD ma-
trix). Each term of the matrix represents a deformation mode of the laminate. The matrix terms
depend on the elastic properties of plies, their thickness, the number of plies and the stacking
sequence (sequence and ply orientation). The main terms associated with bend-twist coupling
effects are D16 and D26 (Reddy, 2003), which affect the aeroelastic tailoring characteristics of
the structure.
Thus, for the same loading, each laminate configuration has a unique deformation and,

consequently, a different torsion angle. The torsion calculated using the finite element model
changes the angle of attack of each wind turbine blade element, which is used to calculate Cp
of the turbine. To assess the behavior of the blade over the range of wind speeds to which it
will be subjected, the output variable of this study is defined to be the sum of Cp at three
different speeds above the nominal design speed of the blade (10m/s). The wind speeds used to
calculate the sum of individual Cp were 13, 15 and 20m/s. These speeds were used to compose
the objective function aiming to achieve an optimal blade design with an improved efficiency for
higher wind speeds than the nominal one. These values are chosen to cover a range from a little
above the nominal design speed up to the maximum speed of the blade, which is the domain
of higher possible gain in power efficiency considering the approach used in this work. Figure 4
depicts the input and output variables of the analysis.

Input variables −→ f(x) −→ Response
︷ ︸︸ ︷

x1 − Lamina 1 orientation
x2 − Lamina 2 orientation
x3 − Lamina 3 orientation
x4 − Lamina 4 orientation
x5 − Lamina 5 orientation
x6 − Lamina 6 orientation
x7 − Lamina 7 orientation

︷ ︸︸ ︷

BEMT
Layup sequence

Finite element model
Cp(U = 20m/s)
Cp(U = 15m/s)
Cp(U = 13m/s)

︷ ︸︸ ︷
∑

Cp

Fig. 4. Objective function and the corresponding input and output variables

Calculation of Cp for each wind speed is an iterative process. First, each wind turbine blade
configuration is subjected to the first load, which is calculated based on the non-deformed wind
turbine blade. The first load deforms the wind turbine blade, changing the angle of attack and,
consequently, the amplitude of this load.
The deformation caused by the loads is determined in the finite element model. Using the

deformed blade and the BEMT, a new load is calculated and a new simulation performed.
Because each laminate has a different bend-twist coupling effect, each layup will have a different
deformation even when subjected to the same load.
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This process is repeated until the difference in the displacement at the tip of the blade when
the results of two subsequent iterations are compared is less than 1%. When this value is reached,
Cp can be calculated for the deformed blade. This sequence is repeated for each wind turbine
blade layup sequence for the three wind speeds (13, 15 and 20m/s).

2.3. Design of experiments (DoE)

The DoE procedure aims to ensure that as much information as possible is obtained using
a limited number of experiments. It is also the first step in the construction of the surrogate
model and has an influence on the accuracy of the model. In projects where several variables are
evaluated and a complex metamodel is constructed, it is recommended that the DoE spreads
the design points within the complete design space.
In the Latin hypercube, as in the DoE technique used in this work, each input variable

is divided into n non-overlapping intervals of equal probability, where n is the total number
of samples desired. A value within each interval is selected randomly. The n values of the first
variable are associated with n values of the second variable. These n pairs are randomly combined
with n values of the third variable to form n trebles, and so on (Myers et al., 2008). In the present
work, 15 samples were adopted as the initial set of points.

2.4. Metamodel construction

Several techniques have been developed to create metamodels, including: polynomial regres-
sion, Kriging, RBFs, neural networks and support vector regression. With RBFs, the technique
adopted here, the surrogate model is built by interpolation of a database of samples xi and their
responses fi. The surrogate model is generated by the linear combination of functions centered
on the sample point (Lanzi and Giavotto, 2006).
One of the most popular explanation of RBFs is given by Broomhead and Loewe (1998): given

a set of n distinct vectors {xi; i = 1, 2, . . . , n} ∈ R
N , and n real numbers {fi; i = 1, 2, . . . , n},

find a function s : RN → R satisfying the conditions

s(xi) = fi i = 1, 2, . . . , n (2.9)

The RBFs approach introduces a set of n equations that have the form: φ(‖x − xi‖), where
φ is some non-linear function (the basis function) which depends on the distance ‖x − xi‖ and
x ∈ R

N . The vectors xi ∈ R
N , i = 1, 2, . . . , n are the centers of the RBFs and are obtained from

the input database. Therefore, s(x) is given by

s(x) =
n∑

i=1

wiφ(‖x − xi‖) (2.10)

Substituting Eq. (2.10) into conditions (2.9), the following set of linear equations is obtained







f1
...
fn







=






Λ11 · · · Λ1n
...
. . .

...
Λn1 · · · Λnn












w1
...
wn







(2.11)

where

Λij = φ(‖xi − xj‖) i, j = 1, 2, . . . , n (2.12)

Therefore, w can be obtained by solving the linear system given in (2.11), or, symbolically

w = Λ−1f (2.13)
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Aiming to generate an RFBs model with improved properties, one of the following parametric
basis functions types is usually employed (Forrester et al., 2008):
— Gaussian

φ(r) = e−r
2/2σ2 (2.14)

— Multiquadratic

φ(r) =
√

r2 + σ2 (2.15)

— Inverse multiquadratic

φ(r) =
1√
r2 + σ2

(2.16)

where r = ‖x−xi‖ and σ2 is the variance. In this study, ‖·‖ is defined as the Euclidean distance
and the Gaussian basis functions are used to build the surrogate model.

2.5. Metamodel optimization and verification

After construction of the surrogate model, new points known as infill points are added in
the most promising regions to find the global optimum of the function and thus to improve the
accuracy of the surrogate model in these regions. Several methods can be used to determine
these additional points. The present work takes advantage of the stochastic refinement method
proposed by Regis and Schoemaker (2007), the Global Metric Stochastic Response Surface
(G-MSRS). This method is iterative, and at each iteration the surrogate model is updated
and a new point selected for the objective function evaluation.
The method requires the following inputs:

1) A continuous real-valued function f defined on a compact hypercube D = [a, b] ⊆ R
D;

2) A surrogate model, e.g., RBFs or Kriging (RBFs model is used in the present work);

3) A set of n0 initial evaluation points J = [x1, . . . ,xn0] ⊆ D (i.e., the DoE points);
4) The number of candidate points in each iteration;

5) The maximum number of function evaluations, Nmax (Nmax depends on the computational
budget/time available).

The output will be the best point reached. The algorithm uses the following steps:

1) Evaluate the objective (cost) function at n0 initial points defined by the DoE (set J ). Set
n = n0 and An = J . Consider x

∗
n the point in An with the smallest value;

2) While n < Nmax;

2.1) Build/update the surrogate model using the data points Bn = {(xi, fxi) :
i = 1, . . . , n};

2.2) Randomly generate candidate points Ωn = {yn,1, , . . . ,yn,t} in R
d. For each

j = 1, . . . , t if yn,t 6∈ D replace yn,j by the nearest point in D. The points Ωn
are called the candidate points;

2.3) Considering the surrogate model output and the dataset Bn, select the next cost
function evaluation point xn+1 from the candidate points Ωn;

2.4) Evaluate the cost function in xn+1;

2.5) Update the information An+1 = An ∪ {xn+1}; Bn+1 = Bn ∪ {xn+1, f(xn+1)}; x∗ is
the best point in An+1. Return n = n+ 1;

3) Return the best point obtained x∗nmax.
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Step 2.2 was implemented such that the convergence requirements stated in Regis and Schoe-
maker (2007) were satisfied. These include ensuring: (i) that the random candidate points are
all contained in D and that two sample sets are generated in this step; (ii) that the first set
has points uniformly distributed over the domain; (iii) and that the second set is generated by
random perturbation of the best point x∗ obtained so far.
In step 2.3, selection of the next evaluation point is based on two criteria: the estimated

value of the function calculated by the surrogate model and the distance from points already
evaluated. Each candidate point generated in step 2.2 is given a score between 0 and 1 based
on the two criteria. A more desirable point receives a score closer to 0. As the objective is
to minimize the cost function and evaluate the greatest number of candidate points, a good
candidate point will have a low cost function value and can be far from the points previously
evaluated An. The next cost function evaluation point is the one that has the lowest score of all
the candidate points. Step 2.3 can be divided as follows:

a) For each x ∈ Ωn compute the result from the surrogate model sn(x);
b) For each x ∈ Ωn compute the minimum distance from the previously evaluated points
∆n(x) = min1¬i¬nD(x,xi);

c) For each x ∈ Ωn compute V Rn (x) = (sn(x)− sminn )/(smaxn − sminn );
d) For each x ∈ Ωn compute V Dn (x) = (∆maxn −∆n(x))/(∆maxn −∆minn );
e) For each x ∈ Ωn compute Wn(x) = wRn V Rn (x) + wDn V Dn (x);
f) Select the next evaluation point for the cost function xn+1 that minimizes the functionWn.

In order to guarantee convergence to the global minimum of the function, Mueller (2012)
proposes that the weights of the parameters, the distance from points previously evaluated
and the response from the surrogate model be varied at each iteration. The proposal can be
formulated as follows:

As wDn and w
R
n are nonnegative weights to balance global and local searches such that

wDn +w
R
n = 1, let w

D
n = 1 and at each subsequent iteration subtract 0.1 from this parameter

until wDn = 0. Afterwards, the value of w
D
n is reset to 1 and a new cycle starts. This process

is repeated until the maximum number of cost function evaluations is reached.

3. Results and discussion

Combined application of the techniques described in Section 2 allows a layup sequence for a
wind turbine blade with an optimal power coefficient to be obtained. Figure 5 shows the result
of the objective function for each iteration. The first 15 responses are obtained by simulation of
the samples generated by the DoE. The rest of the responses are the results of the sequential
refinement. The best value of the objective function during the DoE is 1.511. In the sequential
refinement and optimization phase, the maximum value after 27 iterations is 1.522.

In order to determine the accuracy of the surrogate model, the difference between the value
predicted by the metamodel and the observed value in each iteration of the sequential refinement
phase is calculated (see Fig. 6). Not only the absolute errors are very close to zero, but the
proportional mean error of the iterations is 0.31%, indicating that the surrogate model is very
accurate.

The mean square error is also evaluated and converges to 0.00004 after 27 iterations, as
shown in Fig. 7. However, this convergence is not confirmed in additional iterations, and the
mean square error oscillates as new simulations are added. This behavior is caused by the
sequential refinement, which starts a new search for the optimum in a little-explored region
every 10 iterations, as proposed by Mueller (2012).
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Fig. 5. Response of the objective function in each iteration

Fig. 6. Absolute error per iteration

Fig. 7. Absolute error per iteration
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As the new iterations are added, the amplitude of these oscillations should decrease until
some point when they are no longer noticeable. When this point is reached, there is nothing
to be gained from adding the new responses from the cost function to the surrogate model.
However, this number of iterations was not reached in the present study, which sought for the
optimum using less than 90 cost function responses.

The speed and accuracy with which an RBFs surrogate model can optimize composite struc-
tures was also investigated in studies by Lanzi and Giavotto (2006) and Nik et al. (2014). In
those analyses, the authors noted that structural problems associated with laminated composite
structures could be represented with a high degree of reliability using RBFs.

The results of the present study also show the efficiency of the sequential refinement and
optimization technique proposed by Regis and Schoemaker (2007) for optimization of laminated
composite structures as the optimal result was obtained after 27 iterations (or evaluations of
the cost function).

In order to evaluate its efficiency and ensure that the benefits it affords can be observed,
the proposed methodology is applied three times consecutively to the problem in question, and
each time a new set of starting points (DoE) is generated. Although the mean improvement
compared with the best value for the DoE was small (0.6%), this value is merely representative
because it evaluates the sum of Cp at only three different speeds.

To evaluate the real gain in the power generated, the laminate configurations that had the
highest and lowest values of

∑
Cp were selected, i.e., laminate 1 and laminate 2, respectively.

It is clear from the Cp curves for these laminates, which are shown in Fig. 8, that a correct
use of aeroelastic tailoring can bring considerable gains in the design of laminated wind turbine
blades for wind speeds above the nominal design speed (10m/s). For a wind speed of 13m/s,
the difference can be as much as 2.1%, while at a wind speed of 15m/s the difference is 3.1%
and for a wind speed of 20m/s the difference between the laminates can be as high as 8.4%.
These results provide ample justification for the development and use of a methodology that
speeds up the optimization of the design of composite wind turbine blades.

Fig. 8. Cp vs. wind speed curves for the best and worst laminate configurations

The increase in the power coefficient is made by merely redefining the layup sequence. No
investments in the manufacturing process are needed and no additional costs are incurred. All
that is needed is to adjust the manufacturing process.
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The increase in the power coefficient obtained using aeroelastic tailoring corroborates the
results reported by Veers et al. (1998), Maheri et al. (2007) and Barr and Jaworski (2019), who
achieved gains of up to 15% in some regions of the turbine operating range. Although these three
works, like the present study, used aeroelastic tailoring, they adopted a different approach to that
used here and sought for reduction of the maximum load by passive control in order to increase
the diameter of the rotor, thereby increasing the power generated. Using an approach similar to
that described here, Deilmann (2009) used aeroelastic tailoring to ensure that the blades always
operated with the highest lift coefficient and lowest drag coefficient, thereby generating a greater
torque than an isotropic blade and increasing the power generated. The analysis carried out by
Deilmann (2009) indicated a performance increase of 6%.

Figures 9 and 10 show the variation of the lift and drag coefficients, respectively, over the
span of the blade for laminates 1 and 2, considering a wind speed of 20m/s. From these figures, it
can be clearly observed that laminate 1 generates a greater torque in the turbine than laminate 2,
and in which position the gain is higher.

Fig. 9. Lift coefficient vs. radius of the wind turbine blade for laminates 1 and 2

Fig. 10. Drag coefficient vs. radius of the wind turbine blade for laminates 1 and 2

Comparison of the power gain for laminate 1 in relation to laminate 2 shows that this follows
the difference in Cp for the two laminates, which increases as the wind speed increases above
the nominal design speed. Figure 11 shows these differences in the power curves at wind speeds
greater than 13m/s, a speed at which a significant increase in power begins to be observed.



406 D.G. Dellaroza et al.

Fig. 11. Power generated by laminates 1 and 2 vs. wind speed

Use of passive adaptation at wind speeds greater than the nominal design speed, as proposed
here, has an undesirable effect: an increased load on the blade. Comparison of the results for
laminates 1 and 2 shows that there is an increase of up to 1.7Nm in the torque and up to
0.8Nm in the normal force when laminate 1 is used for the turbine blade. Although the absolute
numbers are relatively small and may be of no practical consequence, structural verification with
a more detailed numerical model is recommended.
As already mentioned, one of the issues in any evaluation of a wind turbine blade is the

computational effort needed. In this work, evaluation of each laminate configuration takes around
5 minutes. This includes the whole calculation process, from structural simulation to calculation
of Cp with all necessary iterations. The computer used has an Intel Core i5 processor running
at 2.5GHz and 8GB of RAM.
The total number of input variables is seven, corresponding to the orientations of the laminate

in each layup. As the orientation can vary from −90◦ to +90◦, millions of combinations of layups
are possible. Investigation of all these configurations would take an extremely long time.
The methodology proposed here identified the optimal stacking sequence after 27 iterations,

or approximately 2 hours of computer processing, indicating that there is a need for contin-
ued development of faster methods for evaluating wind turbine blade designs. When combined
with optimization methods, surrogate models yield satisfactory results and can go some way to
addressing this problem.

4. Concluding remarks

The methodology proposed by Wang and Shan (2007) was adapted here and used to optimize
the layup sequence of a composite wind turbine blade. The results were considered satisfactory.
One of the main issues when optimizing the layup sequence of wind turbine blades is the high
computational cost. However, the proposed methodology appears to have overcome this issue
as it allowed the optimal sequence to be identified after about 27 computational experiments
(simulations).

The surrogate approach based on RBFs used here proved to be quite a suitable method
for this application as it predicted the results of the high-fidelity model (i.e., the finite element
model) over the entire domain.
Finally, it was found that the use of aeroelastic tailoring could generate Cp gains at wind

speeds higher than the nominal design speed. The gain in Cp for laminate 1 in relation to
laminate 2 increases continuously as the wind speed increases, and at higher wind speeds the
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difference between Cp for an aeroelastically tailored wind turbine blade and Cp for a blade with
an inefficient layup sequence can be as much as 8.4%.
The approach to aeroelastic tailoring proposed here appears to be better suited to small wind

turbines, where the loads are not so critical. For large wind turbines, it may be more appropriate
to use aeroelastic tailoring and active control together as the former can reduce the loads so
that the overall active and passive control is more efficient, as proposed in some studies.
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