PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extended penalty coefficients for elimination the locking effects in moderately thick beam and plate finite elements

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper is dedicated to presentation and energy verification of the methods of stabilization the strain energy by penalty coefficients. Verification of the methods is based on the consistency and ellipticity conditions to be satisfied by the finite elements. Three methods of stabilization are discussed. The first does not satisfy the above requirements. The second is consistent but cannot eliminate parasitic energy terms. The third method, proposed by the author, is based on the decomposition of the element stiffness matrix. The method can help to eliminate locking of the finite elements. For two-noded beam element with linear shape functions and exact integration a stabilized free of locking (and elliptical) element is received (equivalent to reduced integration element). Two plate finite elements are analyzed: four-noded rectangular element and DSG triangle. A new method of stabilization with the use of four independent parameters is proposed. The finite elements with this kind of stabilization satisfy the consistency condition. In the rectangular element it was not possible to eliminate one parasitic term of energy which appears during the procedure. For DSG triangle all parasitic terms of energy are eliminated. The penalty coefficients depends on the geometry of the triangle.
Twórcy
autor
  • Faculty of Civil Engineering, Warsaw University of Technology, Warsaw
Bibliografia
  • 1. M. BISCHOFF, K.U. BLETZINGER K.U., Improving stability and accuracy of Reissner-Mindlin plate finite elements via algebraic subgird scale stabilization, Comp. Meth. Appl . Mech. Engrg., 193, 1517–1528, 2004
  • 2. M. BISCHOFF, K.U. BLETZINGER, Stabilized DSG plate and shell elements”, In: “Trends in Computational Structural Mechanics, W. A. Wall, at al., eds., CIMNE, Barcelona, 253–263, 2001
  • 3. K.U. BLETZINGER, M. BISCHOFF, E. RAMM, A unifi ed approach for shear-locking free triangular and rectangular shell finite elements, Computers & Structures, 75, 321–334, 2000
  • 4. N. CARPENTER, T. BELYTSCHKO, H. STOLARSKI, Locking and shear scaling factors in C-0 bending elements, Computers & Structures, 22, 39–52, 1986
  • 5. H.R. DHANANJAYA, P.C. PANDEY, J. NAGABHUSHANAM, I. ZAINAH, New nine-node Lagrangian quadrilateral plate element based on Mindlin-Reissner theory using IFM, An International Journal of Structural Engineering and Mechanics, 41, 205–229, 2012
  • 6. I. FRIED I, Shear in C-0 and C-1 bending elements, Int. Journ. Solids. Struct., 11, 449–460, 1973
  • 7. W. GILEWSKI, Correctness of plate bending element with physical shape functions, Finite Element News, 3, 29–34, 1993
  • 8. W. GILEWSKI, On the Criteria for Evaluation of Finite Elements: From Timoshenko Beam to Hencky-Bolle Plate [in Polish], Warsaw University of Technology Publishing House, Warsaw, Poland, 2005
  • 9. W. GILEWSKI, Some extensions of energy difference criterion for finite element evaluation, CMM-2007, Łódź-Spała, 2007
  • 10. W. GILEWSKI, M. SITEK, The inf-sup condition tests for shell/plate finite elements, Archives of Civil Engineering, LVII, 425–447, 2011
  • 11. A. IOSILEVICH, K.J. BATHE, F. BREZZI, On evaluation the inf-sup condition for plate bending elements, International Journal for Numerical Methods in Engineering, 40, 3639–3663, 1997
  • 12. M. LYLY, R. STENBERG, T. VIHINEN, A stable bilinear element for the Reissner-Mindlin plate model, Comp. Meth. Appl. Mech. Engrg., 110, 343–357, 1993
  • 13. G.A. MOHR, Application of penalty functions to a curved isoparametric axisymmetric thick shell element, Computers & Structures, 15, 685–690, 1982
  • 14. M. REZAIEE-PAJAND, F. SHAHABIAN, F.H. TAVAKOLI, A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates, An International Journal of Structural Engineering and Mechanics, 43, 253–271, 2012
  • 15. A. TESSLER, Shear deformable bending elements with penalty relaxation, In: Finite Element Methods for Plate and Shell Structures, Vol. 1. Element Technology, T.J.R. Hughes, E. Hinton, eds., Pineridge Press, Swensea, 266–290, 1986
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3aee7c1b-f57a-4783-9b33-7a30793829be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.