PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrical and optical properties of nanowires based solar cell with radial p-n junction

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In our studies the absorption, transmittance and reflectance spectra for periodic nanostructures with different parameters were calculated by the FDTD (Finite-Difference Time-Domain) method. It is shown that the proportion of reflected light in periodic structures is smaller than in case of thin films. The experimental results showed the light reflectance in the spectral range of 400–900 nm lower than 1% and it was significantly lower in comparison with surface texturing by pyramids or porous silicon. Silicon nanowires on p-type Si substrate were formed by the Metal-Assisted Chemical Etching method (MacEtch). At solar cells with radial p-n junction formation the thermal diffusion of phosphorus has been used at 790°C. Such low temperature ensures the formation of an ultra-shallow p-n junction. Investigation of the photoelectrical properties of solar cells was carried out under light illumination with an intensity of 100mW/cm2. The obtained parameters of NWs' solar cell were Isc = 22 mA/cm2, Uoc = 0.62 V, FF = 0.51 for an overall efficiency η = 7%. The relatively low efficiency of obtained SiNWs solar cells is attributed to the excessive surface recombination at high surface areas of SiNWs and high series resistance.
Twórcy
  • Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv 01033, Ukraine
autor
  • V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, 41 pr. Nauki, Kyiv 03028, Ukraine
  • Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv 01033, Ukraine
  • V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, 41 pr. Nauki, Kyiv 03028, Ukraine
autor
  • Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv 01033, Ukraine
  • Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv 01033, Ukraine
  • Chuiko Institute of Surface Chemistry NAS of Ukraine, 17 Ganeral Naumova St., Kyiv 03164, Ukraine
Bibliografia
  • [1] X. Li, Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics, Curr. Opin. Solid State Mater. Sci. 16 (2) (2012) 71–81, http://dx.doi.org/10.1016/j.cossms.2011.11.002.
  • [2] K.Q. Peng, S.T. Lee, Silicon nanowires for photovoltaic solar energy conversion, Adv. Mater. 23 (2011) 198–215, http://dx.doi.org/10.1002/adma.201002410.
  • [3] F. Es, G. Baytemir, M. Kulakci, R. Turan, Metal-assisted nano-textured solar cells with SiO2/Si3N4 passivation, Solar Energy Mater. Solar Cells 160 (2017) 269–274.
  • [4] C.I. Yeo, Y.M. Song, S.J. Jang, Y.T. Lee, Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink, Opt. Express 19 (2011) A1109–A1116, http://dx.doi.org/10.1364/OE.19.0A1109.
  • [5] C.I. Yeo, J.B. Kim, Y.M. Song, Y.T. Lee, Antireflective silicon nanostructures with hydrophobisity by metal-assisted chemical etching for solar cell application, Nanoscale Res. Lett. 8 (2013) 159, http://dx.doi.org/10.1186/1556-276X-8-159.
  • [6] S.K. Srivastava, D. Kumar, P.K. Singh, M. Kar, V. Kumar, M. Husain, Excellent antireflection properties of vertical silicon nanowire arrays, Solar Energy Mater. Solar Cells 94 (2010) 1506–1511, http://dx.doi.org/10.1016/j.solmat.2010.02.033.
  • [7] J.Y. Jung, Z. Guo, S.W. Jee, H.D. Um, K.T. Park, J.H. Lee, A strong antireflective solar cell prepared by tapering silicon nanowires, Opt. Express 8 (2010) A286–A292, http://dx.doi.org/10.1364/OE.18.00A286.
  • [8] S.K. Srivastava, D. Kumar, S.M. Vandana, R. Kumar, P.K. Singh, Silver catalyzed nanotexturing of silicon surfaces for solar cell applications, Solar Energy Mater. Solar Cells 100 (2012) 33–38, http://dx.doi.org/10.1016/j.solmat.2011.05.003.
  • [9] Y.J. Hung, S.L. Lee, L.A. Coldren, Deep and tapered silicon photonic crystals for achieving antireflection and enhanced absorption, Opt. Express 18 (7) (2010) 6841–6852, http://dx.doi.org/10.1364/OE.18.006841.
  • [10] S. Sharma, K.K. Jain, A. Sharma, Solar cells: in research and applications—a review, Mater. Sci. Appl. Chem. 6 (2015) 1145–1155, http://dx.doi.org/10.4236/msa.2015.612113.
  • [11] C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, S. Wang, Silicon nanowire-array-textured solar cells for photovoltaic application, J. Appl. Phys. 108 (9) (2010), http://dx.doi.org/10.1063/1.3493733, 094318–5.
  • [12] D. Kumar, S.K. Srivastava, P.K. Singh, M. Husain, V. Kumar, Fabrication of silicon nanowire arrays based solar cell with improved performance, Solar Energy Mater. Solar Cells 95 (1) (2011) 215–218, http://dx.doi.org/10.1016/j.solmat.2010.04.024.
  • [13] S. Nichkalo, A. Druzhinin, A. Evtukh, O. Bratus’, O. Steblova, Silicon nanostructures produced by modified MacEtch method for antireflective Si surface, Nanoscale Res. Lett. 12 (2017) 106, http://dx.doi.org/10.1186/s11671-017-1886-2.
  • [14] C. Chartier, S. Bastide, C. Levy-Clement, Metal-assisted chemical etching of silicon in HF–H2O2, Electrochim. Acta 53 (2018) 5509–5516, http://dx.doi.org/10.1016/j.electacta.2008.03.009.
  • [15] D. Sullivan, J. Liu, M. Kuzyk, Three-dimensional optical pulse simulation using the FDTD method, IEEE Trans. Microw. Theory Tech. 48 (7) (2012) 1127–1133, http://dx.doi.org/10.1109/22.848495.
  • [16] A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Timedomain Method, 2nd ed., Artech House, Boston, 2000.
  • [17] W. Sun, Q. Fu, Z. Chen, Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition, Appl. Opt. 38 (15) (1999) 3141–3151, http://dx.doi.org/10.1364/AO.38.003141.
  • [18] A. Deinega, I. Valuev, Long-time behavior of PML absorbing boundaries for layered periodic structures, Comput. Phys. Commun. 182 (1) (2011) 149–151, http://dx.doi.org/10.1016/j.cpc.2010.06.006.
  • [19] J. Li, H. Yu. Yu, Sh. M. Wong, X. Li, G. Zhang, Patrick Guo-Qiang Lo, Dim-Lee Kwong, Design guidelines of periodic Si nanowire arrays for solar cell application, Appl. Phys. Lett. 95 (2009) 243113, http://dx.doi.org/10.1063/1.3275798.
  • [20] P. Gao, H. Wang, Z. Sun, W. Han, J. Li, J. Ye, Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications, Appl. Phys. Lett. 103 (2013) 253105, http://dx.doi.org/10.1063/1.4851236.
  • [21] F. Wang, J. Li, H.Yu. Yu, Optimization of periodic nanopore surface texturing for silicon thin film photovoltaic application, 3rd International Nanoelectronics Conference (INEC) (2010), http://dx.doi.org/10.1109/INEC.2010.5424863.
  • [22] O.V. Pylypova, A.A. Evtukh, P.V. Parfenyuk, I.M. Korobchuk, O.O. Havryliuk, O.Yu. Semchuk, Influence of Si nanowires on solar cell properties: effect of the temperature, Appl. Phys. A 124 (2018) 773, http://dx.doi.org/10.1007/s00339-018-2200-6.
  • [23] M.L. Zhang, X.Q. Peng, X. Fan, J.S. Jie, R.Q. Zhang, S.T. Lee, N.B. Wong, Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching, J. Phys. Chem. C 112 (12) (2008) 4444–4450, http://dx.doi.org/10.1021/jp077053o.
  • [24] X. Li, P.W. Bohn, Metal-assisted chemical etching in HF/H2O2 produces porous silicon, Appl. Phys. Lett. 77 (2000) 2572, http://dx.doi.org/10.1063/1.1319191.
  • [25] K.Q. Peng, S.T. Lee, Silicon nanowires for photovoltaic solar energy conversion, Adv. Mater. 23 (2011) 198, http://dx.doi.org/10.1002/adma.201002410.
  • [26] M.A. Green, M.J. Keevers, Optical properties of intrinsic silicon at 300K, Prog. Photovolt. Res. Appl. 3 (3) (1995) 189–192, http://dx.doi.org/10.1002/pip.4670030303.
  • [27] J. Li, H.Yu. Yu, S.M. Wong, G. Zhang, X. Sun, P.G.Q. Lo, D.L. Kwong, Si nanopillar array optimization on Si thin films for solar energy harvesting, Appl. Phys. Lett. 95 (2009) 033102, http://dx.doi.org/10.1063/1.3186046.
  • [28] J. Li, S.M. Wong, Y. Li, H. Yu. Yu, High-efficiency crystalline Si thin film solar cells with Si nanopillar array textured surfaces, 35th IEEE Photovoltaic Specialists Conference (2010), http://dx.doi.org/10.1109/PVSC.2010.5614445.
  • [29] J. Li, H.Yu. Yu, Y. Li, F. Wang, M. Yang, S.M. Wong, Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells, Appl. Phys. Lett. 98 (2011) 021905, http://dx.doi.org/10.1063/1.3537810.
  • [30] L.P. Avakyants, P.Yu. Bokov, A.V. Chervyakov, A.V. Chuyas, A.E. Yunovich, E.D. Vasileva, D.A. Bauman, V.V. Uelin, B.S. Yavich, Interference effects in the electroreflectance and electroluminescence spectra of InGaN/AlGaN/GaN light-emitting-diode heterostructures, Semiconductors 44 (2010) 1090, http://dx.doi.org/10.1134/S1063782610080245.
  • [31] B.C.P. Sturmberg, K.B. Dossou, L.C. Botten, A.A. Asatryan, C.G. Poulton, C.M. Sterke, R.C. McPhedran, Modal analysis of enhanced absorption in silicon nanowire arrays, Opt. Express 19 (S5) (2011) A1067, http://dx.doi.org/10.1364/OE.19.0A1067.
  • [32] S.M. Sze, Semiconductors Devices Physics and Technology, 2nd edition, John Wiley & Sons, Inc., USA, 2002.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3aed7fc2-d3e2-4adb-a657-bd6006987eab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.