PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Models of multimodal networks and transport processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Models of multimodal cyclic processes, i.e. processes realized with synergic utilization of various local and cyclic acting processes, play a determining role in an evaluation of functioning efficiency inter alia in public transport systems, passengers movement, cargo transport, data and energy transmission etc. We assume that the structure of a system determines repertoire of its behaviors. The paper presents a constraints satisfaction problem, which solving enables an evaluation of potential behaviors of the system of concurrently interacting local cyclic processes. Consequently, it is possible to plan and schedule the multimodal processes realized in that system. The constraints satisfaction problem, enabling the search for the structure of inter-position transport system and guaranteeing realization of assumed schedule of multi-assortment production was formulated for a declarative model of the multimodal transportation processes system. The attached calculation example illustrates the computational efficiency of the proposed approach.
Rocznik
Strony
635--650
Opis fizyczny
Bibliogr. 32 poz., rys., wykr., tab., il.
Twórcy
autor
  • Department of Electronics and Computer Science, Koszalin University of Technology, 2 Śniadeckich St., 75-453 Koszalin, Poland
  • Institute of Computer Engineering, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland
autor
  • Department of Business Informatics, Warsaw University of Technology, 85 Narbutta St., 02-524 Warszawa, Poland
Bibliografia
  • [1] H.M. Foo, H.W. Leong, Y. Lao, and H.C. Lau, “A multi-criteria”, Multi-Modal Passenger Route Advisory System. Proc IES-CTR 1, CD-ROM (1999).
  • [2] Z. Guo, Transfers and Path Choice in Urban Public Transport Systems, Massachusetts Institute of Technology, Massachusetts, 2008.
  • [3] M.E.T. Horn, “Multi-modal and demand-responsive passenger transport systems: a modelling framework with embedded control systems”, Transportation Research Part A: Policy and Practice 36 (2), 167–88 (2002).
  • [4] K. Abadi, N.G. Hall, and C. Sriskandarajah, “Minimizing cycle time in a blocking flowshop”, Operations Research 48 (1), 177–180 (2000).
  • [5] G. Bocewicz and Z. Banaszak, “Declarative approach to cyclic steady states space refinement: periodic processes scheduling”, Int. J. Advanced Manufacturing Technology, SI: Advanced Dispatching Rules for Large-Scale Manufacturing Systems 67 (1–4), 137–155 (2013).
  • [6] M.P. Fanti, B. Maione, S. Mascolo, and B. Turchiano, “Low-cost deadlock avoidance policies for flexible production systems”, Int. J. Modeling Simulation 17 (4), 310–316 (1997).
  • [7] D. Krenczyk, K. Kalinowski, and C. Grabowik, “Integration production planning and scheduling systems for determination of transitional phases in repetitive production”, Hybrid Artificial Intelligent Systems 7209, 274–283 (2012).
  • [8] M. Magiera, “A relaxation heuristic for scheduling flowshops with intermediate buffers“, Bull. Pol. Ac.: Tech. 61 (4), 929–942 (2013).
  • [9] C. Cassandras, Discrete State Systems: Modelling and Performance Analysis MA, Aksen, Boston, 1993.
  • [10] M. Polak, P. Majdzik, Z. Banaszak, and R. Wójcik, “The performance evaluation tool for automated prototyping of concurrent cyclic processes”, Fundamenta Informaticae 60 (1–4), 269–89 (2004).
  • [11] P. Dąbrowski, J. Pempera, and C. Smutnicki, “Minimizing cycle time of the flow line-genetic approach with gene expression”, Lecture Notes in Computer Science 4431, 194–201 (2007).
  • [12] M. Friedrich, “A multi-modal transport model for integrated planning”, Proc. 8th World Conf. on Transport Research 1, 1–14 (1999).
  • [13] B. Gaujal, M. Jafari, M. Baykal-Gursoy, and G. Alpan, “Allocation sequences of two processes sharing a resource”, IEEE Trans. on Robotics and Automation 11 (5), 748–353 (1995).
  • [14] G. Alpan and M.A. Jafari, “Dynamic analysis of timed petri nets: a case of two processes and a shared resource”, IEEE Trans. on Robotics and Automation 13 (3), 338–346 (1997).
  • [15] Z. Banaszak, Modelling and Control of FMS: Petri Net Approach, Press Wrocław Technical University, Wrocław, 1991.
  • [16] T. Kampmeyer, “Cyclic scheduling problems”, Ph.D. Dissertation, Universitat Osnabruck, Osnabruck, 2006.
  • [17] E. Levner, V. Kats, D. Alcaide, L. Pablo, and T.C.E Cheng, “Complexity of cyclic scheduling problems: astate-of-the-art survey”, Computers & Industrial Engineering 59 (2), 352–361 (2010).
  • [18] M.B. Zaremba, K. Jędrzejek, and Z.A. Banaszak, “Design of steady-state behaviour of concurrent repetitive processes: and algebraic approach”, IEEE Trans. Systems, Man, and Cybernetics A 28 (2), 199–212 (1998).
  • [19] M. Abrams, N. Dorastamy, A. Matur, and A. Chytra, “Visual analysis of parallel and distributed programs in the time, and frequency domains”, IEEE Trans. Parallel and Distributed Systems 3 (6), 672–685 (1992).
  • [20] F.L. Baccelli, G. Cohen, G.J. Olsder, and J-P. Quadrat, Synchronization and Linearity: an Algebra for Discrete Event Systems, Wiley&Sons, Chichester, 1992.
  • [21] P. Sitek and J. Wikarek, “A hybrid approach to modeling and optimization for supply chain management with multimodal transport”, IEEE Conf.: 18th Int. Conf Methods and Models in Automation and Robotics (MMAR) 1, 777–782 (2013).
  • [22] T. Sawik, “A mixed integer program for cyclic scheduling of flexible flow lines”, Bull. Pol. Ac.: Tech. 62 (1), 121–128 (2014).
  • [23] G. Alpan and M.A. Jafari, “Synthesis of sequential controller in the presence of conflicts and free choices”, IEEE Trans. Robotics and Automation 14 (3), 488–492 (1998).
  • [24] R. Wójcik, “Towards strong stability of concurrent repetitive processes sharing resources”, Systems Science 27 (2), 37–47 (2001).
  • [25] R. Wójcik, Z. Banaszak, and M. Polak, “Dynamics analysis of cyclic processes with periodic resource allocation function”, Proc. 9th IEEE Int. Conf. Methods and Models in Automation and Robotics 2, 1157–1162 (2003).
  • [26] J. Pempera and C. Smutnicki, “Minimization of a cycle time of production on a line: genetic approach with genes expression”, Automatics 9 (1/2), 189–199 (2005), (in Polish).
  • [27] C. Smutnicki and A. Smutnicki, “ New properties of cyclic schedules in a flow system”, Automatics 11 (1/2), 275–285 (2007) (in Polish).
  • [28] C. Smutnicki and A. Smutnicki, “Cyclic scheduling in a nest system”, in Applications of Systems Theory, pp. 105–115, AGH, Kraków, 2007, (in Polish).
  • [29] R. Wójcik, “Constraint programming approach to designing conflict-free schedules for repetitive manufacturing processes”, Digital Enterprise Technology. Perspectives and Future Challenges, pp. 267–274, Springer, Berlin, 2007.
  • [30] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, New York, 2009.
  • [31] I. Bach, G. Bocewicz, Z. Banaszak, and W. Muszyński, “Knowledge based and CP-driven approach applied to multi product small-size production flow”, Control and Cybernetics 39 (1), 69–95 (2010).
  • [32] M. Relich and W. Muszyński, “The use of intelligent systems for planning and scheduling of product development projects”, Procedia Computer Science 35, 1586–1595 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3aea75c5-4c55-4562-8868-86e79e27a355
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.