PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fundamental Properties of Pythagorean Fuzzy Aggregation Operators

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, some new inequalities of Pythagorean fuzzy weighted averaging (PFWA) operator are explored. Later, we develop some Pythagorean fuzzy point operators and introduce generalized Pythagorean fuzzy weighed averaging (GPFWA) operator. Moreover, combining the Pythagorean fuzzy point operators with GPFWA operator, we present some generalized Pythagorean fuzzy point weighted averaging (GPFPWA) operators, which can adjust the degree of the aggregated arguments with some parameters. Based on GPFPWA operators and normal distribution, an approach to multiple attribute decision making (MADM) problem with completely unknown weight information is proposed under Pythagorean fuzzy environment. Finally, an illustrative example is given to show the feasibility and superiority of the developed method.
Wydawca
Rocznik
Strony
415--446
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • School of Information Science and Engineering, Shaoguan University, Shaoguan, 512005, Guangdong, China
autor
  • School of Information Science and Engineering, Shaoguan University, Shaoguan, 512005, Guangdong, China
Bibliografia
  • [1] Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1986; 20(1): 87–96. doi:10.1016/S0165-0114(86)80034-3.
  • [2] Zadeh LA. Fuzzy sets. Information and Control. 1965;8(3):338–356. doi:10.1016/S0019-9958(65)90241-X.
  • [3] Xu ZS. Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems. 2007; 15(6): 1179–1187. doi:10.1109/TFUZZ.2006.890678.
  • [4] Xu ZS, Cai XQ. Recent advances in intuitionistic fuzzy information aggregation. Fuzzy Optimization and Decision Making. 2010; 9(4):359–381. doi:10.1007/s10700-010-9090-1.
  • [5] Xu ZS, Xia MM. Induced generalized intuitionistic fuzzy operators. Knowledge-Based Systems. 2011; 24(2): 197–209. Available from: http://dx.doi.org/10.1016/j.knosys.2010.04.010.
  • [6] Xu ZS, Yager RR. Some geometric aggregation operators based on intuitionistic fuzzy sets. International Journal of General Systems. 2006; 35(4): 417–433. Available from: http://dx.doi.org/10.1080/03081070600574353.
  • [7] Xu ZS, Yager RR. Dynamic intuitionistic fuzzy multiple attribute decision making. International Journal of Approximate Reasoning. 2008; 48(1): 246–262. doi:10.1016/j.ijar.2007.08.008.
  • [8] Zhao H, Xu ZS, Ni MF, Liu SS. Generalized aggregation operators for intuitionistic fuzzy sets. International Journal of Intelligent Systems. 2010; 25(1): 1–30. doi:10.1002/int.20386.
  • [9] Xu ZS. Choquet integrals of weighted intuitionistic fuzzy information. Information Sciences. 2010; 180(5):726–736. Available from: http://dx.doi.org/10.1016/j.ins.2009.11.011.
  • [10] Xu ZS. Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. Knowledge-Based Systems. 2011; 24(6):749–760. doi: http://dx.doi.org/10.1016/j.knosys.2011.01.011.
  • [11] Li DF, Cheng CT. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recognition Letters. 2002; 23(1-3): 221–225. Available from: http://dx.doi.org/10.1016/S0167-8655(01)00110-6.
  • [12] Mitchell HB. On the Dengfeng-Chuntian similarity measure and its application to pattern recognition. Pattern Recognition Letters. 2003; 24(16):3101–3104. Available from: http://dx.doi.org/10.1016/S0167-8655(03)00169-7.
  • [13] Hwang CM, Yang MS, Hung WL, Lee MG. A similarity measure of intuitionistic fuzzy sets based on the Sugeno integral with its application to pattern recognition. Information Sciences. 2012; 189:93–109. Available from: http://dx.doi.org/10.1016/j.ins.2011.11.029.
  • [14] Boran FE, Akay D. A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition. Information Sciences. 2014; 255: 45–57. Available from: http://dx.doi.org/10.1016/j.ins.2013.08.013.
  • [15] Li DF. Some measures of dissimilarity in intuitionistic fuzzy structures. Journal of Computer and System Sciences. 2004; 68 (1): 115–122. doi: 10.1016/j.jcss.2003.07.006 .
  • [16] Vlachos IV, Sergiadis GD. New Entropy, Similarity Measure of Intuitionistic Fuzzy Sets and their Applications in Group Decision Making. International Journal of Computational Intelligence Systems. 2013; 6(5): 987–1001. Available from: http://dx.doi.org/10.1080/18756891.2013.809939.
  • [17] Morteza M. Fuzzy and Intuitionistic Fuzzy Turing Machines. Fundamenta Informaticae. 2013; 123 (3): 305–315. doi:10.3233/FI-2013-812.
  • [18] Atanassov K. Remark on the intuitionistic fuzzy sets-III. Fuzzy Sets and Systems. 1995; 75 (3): 401–402. doi:10.1016/0165-0114(95)00004-5.
  • [19] Liu HW, Wang GJ, Multi-criteria decision making methods based on intuitionistic fuzzy sets. Eurpoean Journal of Operational Research. 2007; 179(1): 220–233. Available from: http://dx.doi.org/10.1016/j.ejor.2006.04.009.
  • [20] Xia MM, Xu ZS. Generalized point operators for aggregating intuitionistic fuzzy information. International Journal of Intelligent Systems. 2010; 25 (11): 1061–1080. doi: 10.1002/int.20439.
  • [21] Yager RR. Generalized OWA aggregation operators. Fuzzy Optimization and Decision Making. 2004; 3(1): 93–107. doi: 10.1023/B:FODM.0000013074.68765.97.
  • [22] Yager RR, Abbasov AM. Pythagorean membership grades, complex numbers, and decision making. International Journal of Intelligent Systems. 2014; 28 (5): 436–452. doi:10.1002/int.21584.
  • [23] Yager RR. Pythagorean fuzzy subsets. In:Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada, 2013, p.57–61. doi:10.1109/IFSA-NAFIPS.2013.6608375.
  • [24] Yager RR. Pythagorean membership grades in multicriteria decision making. IEEE Transactions on Fuzzy Systems. 2014; 22 (4): 958–965. doi:10.1109/TFUZZ.2013.2278989 .
  • [25] Hadi-Vencheh A, Mirjaberi M. Fuzzy inferior ratio method for multiple attribute decision making problems. Information Sciences. 2014; 277: 263–272. Available from: http://dx.doi.org/10.1016/j.ins.2014.02.019.
  • [26] Zhang XL, Xu ZS. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. International Journal of Intelligent Systems. 2014; 29 (12): 1061–1078. doi:10.1002/int.21676.
  • [27] Peng XD, Yang Y. Some Results for Pythagorean Fuzzy Sets. International Journal of Intelligent Systems. 2015; 30 (11): 1133–1160. doi:10.1002/int.21738.
  • [28] Molodtsov D. Soft set theory-First results. Computers and Mathematics with Applications. 1999; 37 (4-5):19–31. doi:10.1016/S0898-1221(99)00056-5.
  • [29] Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning-I. Information Sciences. 1975; 8 (3): 199–249. doi:10.1016/0020-0255(75)90036-5.
  • [30] Peng XD, Yang Y, Song JP, Jiang Y. Pythagorean Fuzzy Soft Set and Its Application. Computer Engineering. 2015; 41 (7): 224–229. doi:10.3969/j.issn.1000-3428.2015.07.043.
  • [31] Peng XD, Yang Y. Multiple attribute group decision making methods based on Pythagorean fuzzy linguistic set. Computer Engineering and Applications. doi:10.3778/j.issn.1002-8331.1501-0022.
  • [32] Yager RR, Kacprzyk J, Beliakov G. Recent developments on the ordered weighted averaging operators: Theory and practice, Springer-Verlag, Berlin, 2011. ISBN: 978-3-642-17909-9.
  • [33] Yager RR. Including importances in OWA aggregation using fuzzy systems modelling. IEEE Transactions on Fuzzy Systems. 1998; 6 (2): 286–294. doi:10.1109/91.669028.
  • [34] Yager RR. On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics B. 1988; 18 (1): 183–190. doi:10.1109/21.87068 .
  • [35] Torra V. The weighted OWA operator. International Journal of Intelligent Systems. 1997; 12 (2): 153–166. doi:10.1002/(SICI)1098-111X(199702).
  • [36] Merigó JM. A unified model between the weighted average and the induced OWA operator. Expert Systems with Applications. 2011; 38 (9): 11560–11572. Available from: http://dx.doi.org/10.1016/j.eswa.2011.03.034.
  • [37] Emrouznejad A, Marra M. Ordered weighted averaging operators 1988-2014: A citation based literature survey. International Journal of Intelligent Systems. 2014; 29 (11): 994–1014. doi:10.1002/int.21673.
  • [38] Xu ZS. An overwiew of methods for determining OWA operators. International Journal of Intelligent Systems. 2005; 20 (8): 843–865. doi:10.1002/int.20097.
  • [39] Merigó JM. Fuzzy decision making using immediate probabilities. Computers & Industrial Engineering. 2010; 58 (4): 651–657. Available from: http://dx.doi.org/10.1016/j.cie.2010.01.007.
  • [40] Yager RR, Engemann KJ, Filev DP. On the concept of immediate probabilities. International Journal of Intelligent Systems. 1995; 10 (4): 373–397. doi:10.1002/int.4550100403.
  • [41] Yager RR, Alajlan N. Sugeno Integral with Possibilistic Inputs with Application to Multi-Criteria Decision Making. International Journal of Intelligent Systems. 2016; 31 (8):813–826. doi:10.1002/int.21805.
  • [42] Yager RR, Alajlan N. On a Role for Copula’s in Jeffrey’s Rule with An Application to Decision Making. International Journal of Intelligent Systems. 2015; 30 (11): 1117–1132. doi:10.1002/int.21736.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ae6acef-84f5-4702-bf74-e7765b996d2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.