PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Topography and the structure of the surface of polyamide - glass composites after the ageing process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Polymers have found applications in such diverse biomedical fields as tissue engineering, implantation of medical devices and artificial organs, prostheses, ophthalmology, dentistry, bone repair and many other medical fields. The requirements for materials used in the construction of removable dentures are becoming more and more demanding. The introduction of improved flexible materials has been a considerable advance. The aim of this work was to determine how the structure of thermoplastic materials changes over time in terms of weight changes and artificial saliva sorption. Purpose of this paper was to evaluate the influence of the ageing process on structure of polyamide - glass composites applied in dentistry. Design/methodology/approach: Polyamide samples about the diversified content of the glass fibre were produced with method of the injection moulding. Denotation the absorbency of artificial saliva was performed on standardized samples according to the norm. Samples were dried off to fixed mass, and then they were soaked in artificial saliva. Three temperatures of examination were applied 20°C, 35°C and 50°C. Findings: Examinations allowed to show that the absorbency of artificial saliva through composite is dependent on the temperature. Research limitations/implications: To fully evaluate the influence of the ageing process on mechanical properties of polyamide - glass composites applied in human body environment it is planned to continue described research. Simultaneous influence of the ageing process on mechanical properties of polyamide - glass composites will be tested. Originality/value: Applying strengthened thermoplastics with glass fibre on dentures is a new look at materials applied in dentistry.
Słowa kluczowe
Rocznik
Strony
42--49
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Division of Metal and Polymer Materials Processing, Institute of Engineering Materials and Biomaterials, Silesian University of Technology,ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Metal and Polymer Materials Processing, Institute of Engineering Materials and Biomaterials, Silesian University of Technology,ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Metal and Polymer Materials Processing, Institute of Engineering Materials and Biomaterials, Silesian University of Technology,ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] S. Ramakrishna, J. Mayer, E. Wintermantel, Kam W. Leon, Biomedical applications of polymer-composite material, a review, Composites Science and Technology 61 (2001) 1189-1224.
  • [2] A. Ziębowicz, J. Marciniak, The preoperative miniplates treatment influence on the corrosion behavior, Journal of Achievments in Materials and Manufacturing Engineering, 18 (2006) 199-202.
  • [3] J. Marciniak, M. Kaczmarek, A. Ziębowicz, Biomaterials in dentistry, Printing House of the Silesian Technical University, Gliwice, 2008.
  • [4] M. Balazic, J. Kopac, Improvements of medical implants based on modern materials and new technologies, Journal of Achievements in Materials and Manufacturing Engineering 25/2 (2007) 31-34.
  • [5] M. Kiel, J. Marciniak, J. Szewczenko, M. Basiaga, W. Wolański, Biomechanical analysis of plate stabilization on cervical part of spine, Archives of Materials Science and Engineering 38/1 (2009) 41-47.
  • [6] M. Rojek, J. Stabik, The influence of X-rays on strength properties of polyester vascular system prosthesis, Journal of Achievements in Materials and Manufacturing Engineering 35/1 (2009) 47-54.
  • [7] L.A. Dobrzański, A. Pusz, A.J. Nowak, Aramid-silicon laminated materials with special properties - new perspective of its usage, Journal of Achievements in Materials and Manufacturing Engineering 28/1 (2008) 7-14.
  • [8] R.D. Phoenix, M.A. Mansueto, N.A. Ackerman, et al. Evaluation of mechanical and thermal properties of commonly used denture base resins, Journal of Prosthodontics 13/1 (2004) 17-27.
  • [9] F. Faot, M.A. Costa, A.A. Del Bel Cury, R.C.M. Rodrigues Garcia, Impact strength and fracture morphology of denture acrylic resins, The Journal of Prosthetic Dentistry 96/5 (2006) 367-373.
  • [10] A. El-Hadary, J. Drummond, Comparative study of water sorption, solubility, and tensile bond strength of two soft lining materials, The Journal of Prosthetic Dentistry 83/3 (2000) 356-361.
  • [11] B. Wostmann, E. Budtz-Jorgensen, N. Jepson, et al., Indications for removable partial dentures: a literature review, International Journal of Prosthodontics 18/2 (2005) 139-45.
  • [12] G.J. Meijer, P.J. Wolgen, Provisional flexible denture to assist in undisturbed healing of the reconstructed maxilla, The Journal of Prosthetic Dentistry 98/4 (2007) 327-328.
  • [13] http://zirkonlab.igabinet.pl/data/user_files/Image/protezy_ dentystyczne.jpg
  • [14] M. Negrutiu, C. Sinescu, M. Romanu, D. Pop, S. Lakatos. Thermoplastic Resins for Flexible Framework Removable Partial Dentures, Timisoara Medical Journal 3 (2005) 295-299.
  • [15] P.K. Vallittu, Flexural properties of acrylic resin polymers reinforced with unidirectional and woven glass fibers, The Journal of Prosthetic Dentistry 81 (1999) 318-326.
  • [16] P.K. Vallittu, C. Sevelius, Resin-bonded, glass fiber-reinforced composite fixed partial dentures: a clinical study, The Journal of Prosthetic Dentistry 84 (2000) 413-417.
  • [17] M. Vakiparta, M. Puska, P.K. Vallittu, Residual monomers and degree of conversion of partially bioresorbable fiberreinforced composite, Acta Biomaterialia 2 (2006) 29-37.
  • [18] L.A. Dobrzański, Engineering materials and material design, Principles of materials science and physical metallurgy, WNT, Warsaw, 2006 (in Polish).
  • [19] J. John, S.A. Gangadhar, I. Shah, Flexural strength of heat-polymerized polymethyl methacrylate denture resin reinforced with glass, aramid or nylon fibers, Journal of Prosthetic Dentistry 86/4 (2001) 424-427.
  • [20] Y. Katsumata, S. Hojo, N. Hamano, T. Watanabe, H. Yamaguchi, S. Okada, T. Teranaka, S. Ino, Bonding strength of autopolymerizing resin to nylon denture base polymer, Dental Materials Journal 28/4 (2009) 409-418.
  • [21] O.M. Dogan, G. Bolayir, S. Keskin, A. Dogan, B. Bek, The evaluation of some flexural properties of a denture base resin reinforced with various aesthetic fibers, Journal of Material Science 19 (2008) 2343-2349.
  • [22] PN-EN ISO 3696:1999, Water applied in an analytical laboratories - requirements and test methods.
  • [23] PN-ISO 62: 2008, Plastic - Meaning the absorption of water.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ae421a3-478a-4ad5-b572-74d62e756631
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.