Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates the differential binary modulation for decode-and-forward (DF) based relay-assisted free space optical (FSO) network under the effect of strong atmospheric turbulence together with misalignment error (ME). The atmospheric fading links experience K-distributed turbulence. First we derive novel closed form expression for average bit error rate (BER) and outage probability (OP) in terms of Meijer’s G function. Further, the OP of differential DF-FSO system with multiple relays is derived. We also analyze the asymptotic performance for the sake of getting the order of diversity and the coding gain. The power allotment term is utilized to examine the effect of different power allotment techniques on BER and OP. The simulation results have been used to validate the derived analytical results.
Rocznik
Tom
Strony
807--813
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
- Department of ECE, Delhi Technical Campus, Greater Noida, U.P, India
autor
- Department of ECE, M.G.M College of Engineering and Technology, Noida, U.P, India
Bibliografia
- [1] H. Kaushal and G. Kaddoum, “Optical communication in Space: challenges and mitigation techniques”, IEEE Commun. Surveys and Tutorials, 19(1), 57-96, 2017. https://doi.org/10.1109/COMST.2016.2603518.
- [2] D. Agarwal and A. Bansal, “Unified Error Performance of a Multihop DF-FSO Network With Aperture Averaging”, IEEE/OSA J. Opt. Commun. Netw., 11(3), 95-106, 2019. https://doi.org/10.1364/JOCN.11.000095.
- [3] X. Tang, Z. Wang, Z. Xu and Z. Ghassemlooy, “Multihop free-space optical communications over turbulence channels with pointing errors using heterodyne detection”, Journal of Lightwave Technology, 32(15), 2597-2604, 2014. https://doi.org/10.1109/JLT.2014.2330594.
- [4] W. Gappmair, “Further results on the capacity of free-space optical channels in turbulent atmosphere”, IET Communications, 5(9), 1262-1267, 2011. https://doi.org/10.1049/iet-com.2010.0172.
- [5] N. Sharma, A. bansal and P. garg, “Decode and forward relaying in η - μ and Gamma-Gamma dual hop transmission system”, IET Communications, 1769-1776, 2016. https://doi.org/10.1049/iet-com.2015.0992.
- [6] M. Safari and M. Uysal, “Relay-assisted free-space optical communication”, IEEE Trans. Wireless Commun., 7(12), 5441-5449, 2008. https://doi.org/10.1109/T-WC.2008.071352.
- [7] D. Agarwal and A. Bansal, “Partial CSI based relay selection for TWR-FSO over unified exponentiated Weibull links”, in proc. IEEE International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 497-501, 2019. https://doi.org/10.1109/SPCOM.2018.8724491.
- [8] T. Himsoon, W. Su and K. J. R. Liu, “Differential transmission for amplify-and-forward cooperative communications”, IEEE Signal Process. Lett., 12(9), 597-600, 2006. https://doi.org/10.1109/LSP.2005.853067.
- [9] D. Agarwal and A. Bansal, “STPM based performance analysis of finite-sized differential serial FSO network”, in Proc. National Conference on Communications (NCC),1-6, 2020. https://doi.org/10.1109/NCC48643.2020.9056065.
- [10] W. O.Popoola and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence”, J. Lightw. Technol., 27(8), 967-973, 2009. https://doi.org/10.1109/JLT.2008.2004950.
- [11] E. Jakeman and P. N. Pusey, “A model for non-Rayleigh sea echo.” IEEE Transactiion on Antennas Propagation, 24, 806-814, 1976. https://doi.org/10.1109/TAP.1976.1141451.
- [12] Kiasaleh., “Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence”, IEEE Trans. Commun., 54(4), 604-607, 2006. https://doi.org/10.1109/TCOMM.2006.873067.
- [13] M. Uysal and J. T. Li, “BER performance of coded free-space optical links over strong turbulence channels”, in Proc. IEEE Vehicular Technological Conference (VTC spring), 168-172, 2009. https://doi.org/10.1109/VETECS.2004.1387973.
- [14] G. K. Karagiannidis, T. A. Tsiftsis and H. G. Sandalidis, “Outage probability of relayed free space optical communication systems”, Electron. Lett., 42(17), 994-995, 2006. https://doi.org/10.1049/el:20061443.
- [15] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 6th ed. San Diego, CA, USA: Academic Press, 2000.
- [16] V. S. Adamchik and O. I. Marichev, “The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system.”, in Proc. International Conference on Symbolic and Algebraic Computation, 212-224, 1990. https://doi.org/10.1145/96877.96930.
- [17] A.P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series: More Special Functions , Gordon and Breach Science Publishers, vol. 3, 1990.
- [18] K. H. Biyari and W. C. Lindsey, “Statistical distributions of hermitian quadratic forms in complex Gaussian variables”, IEEE Trans. Inf. Theory, 39(3), 1076-1082, 1993. https://doi.org/10.1109/18.256521.
- [19] M. R. Bhatnagar, “Decode-and-forward based differential modulation for cooperative communication system with unitary and non-unitary constellations”, IEEE Trans. Veh. Technol., 61(1), 152-165, 2012. https://doi.org/10.1109/TVT.2011.2177482.
- [20] I. Wolfram Research., Mathematica Edition: Version 8.0. Wolfram Research, Inc., 2010.
- [21] J. G. Proakis and M. Salehi, Digital Communications, 5th edition. McGraw-Hill Book Company, 2008.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ae27001-a3b9-4200-a56d-def9327a58d2