PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rough-Fuzzy Circular Clustering for Color Normalization of Histological Images

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Color disagreement among histological images may affect the performance of computer-aided histological image analysis. So, one of the most important and challenging tasks in histological image analysis is to diminish the color variation among the images, maintaining the histological information contained in them. In this regard, the paper proposes a new circular clustering algorithm, termed as rough-fuzzy circular clustering. It integrates judiciously the merits of rough-fuzzy clustering and cosine distance. The rough-fuzzy circular clustering addresses the uncertainty due to vagueness and incompleteness in stain class definition, as well as overlapping nature of multiple contrasting histochemical stains. The proposed circular clustering algorithm incorporates saturation-weighted hue histogram, which considers both saturation and hue information of the given histological image. The efficacy of the proposed method, along with a comparison with other state-of-the-art methods, is demonstrated on publicly available hematoxylin and eosin stained fifty-eight benchmark histological images.
Wydawca
Rocznik
Strony
103--117
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • Biomedical Imaging and Bioinformatics Lab, Machine Intelligence Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal, 700 108, India
  • Biomedical Imaging and Bioinformatics Lab, Machine Intelligence Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal, 700 108, India
Bibliografia
  • [1] Gelasca ED, Byun J, Obara B, Manjunath BS. Evaluation and Benchmark for Biological Image Segmentation, Proceedings of IEEE International Conference on Image Processing, San Diego, CA, USA, 2008. doi:10.1109/ICIP.2008.4712130.
  • [2] Ghaznavi F, Evans A, Madabhushi A, Feldman M. Digital Imaging in Pathology: Whole-Slide Imaging and Beyond, Annual Review of Pathology: Mechanisms of Disease, 2013;8(1):331-359. doi:10.1146/annurev-pathol-011811-120902.
  • [3] Hanbury A. Circular Statistics Applied to Colour Images, Proceedings of 8th Computer Vision Winter Workshop, vol. 91, pp. 53-71, Citeseer 2003.
  • [4] Khan AM, Rajpoot N, Treanor D, Magee D. A Nonlinear Mapping Approach to Stain Normalization in Digital Histopathology Images Using Image-Specific Color Deconvolution, IEEE Transactions on Biomedical Engineering, 2014;61(6):1729-1738. doi:10.1109/TBME.2014.2303294.
  • [5] Kothari S, Phan JH, Moffitt RA, Stokes TH, Hassberger SE, Chaudry Q, Young AN, Wang MD. Automatic Batch-invariant Color Segmentation of Histological Cancer Images, Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL, USA, 2011. doi:10.1109/ISBI.2011.5872492.
  • [6] Lai YK, Rosin PL. Efficient Circular Thresholding, IEEE Transactions on Image Processing, 2014; 23(3):992-1001. doi:10.1109/TIP.2013.2297014.
  • [7] Li X, Plataniotis K. Circular Mixture Modeling of Color Distribution for Blind Stain Separation in Pathology Images, IEEE Journal of Biomedical and Health Informatics, 2017;21(1):150-161. doi:10.1109/JBHI.2015.2503720.
  • [8] Li X, Plataniotis KN. A Complete Color Normalization Approach to Histopathology Images Using Color Cues Computed from Saturation-Weighted Statistics, IEEE Transactions on Biomedical Engineering, 2015;62(7):1862-1873. doi: 10.1109/TBME.2015.2405791.
  • [9] Macenko M, Niethammer M, Marron JS, Borland D, Woosley JT, Guan X, Schmitt C, Thomas NE. A Method for Normalizing Histology Slides for Quantitative Analysis, Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA 2009. doi:10.1109/ISBI.2009.5193250.
  • [10] Nyul LG, Udupa JK, Zhang, X. New Variants of A Method of MRI Scale Standardization, IEEE Transactions on Medical Imaging, 2000;19(2):143-150. doi:10.1109/42.836373.
  • [11] Peter L, Mateus D, Chatelain P, Schworm N, Stangl S, Multhoff G, Navab N. Leveraging Random Forests for Interactive Exploration of Large Histological Images, Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS, vol. 8673. Springer, Cham 2014. doi:10.1007/978-3-319-10404-1_1.
  • [12] Plataniotis KN, Venetsanopoulos AN. Color Image Processing and Applications, Springer-Verlag Berlin Heidelberg, New York, USA, 2000. ISBN:978-3-540-66953-1, 978-3-642-08626-7.
  • [13] Reinhard E, Adhikhmin M, Gooch B, Shirley P. Color Transfer Between Images, IEEE Computer Graphics and Applications, 2001;21(5):34-41. doi:10.1109/38.946629.
  • [14] Ruderman DL, Cronin TW, Chiao CC. Statistics of Cone Responses to Natural Images: Implications for Visual Coding, Journal of the Optical Society of America A, 1998;15(8):2036-2045. URL https://doi.org/10.1364/JOSAA.15.002036.
  • [15] Tabesh A, Teverovskiy M, Pang HY, Kumar VP, Verbel D, Kotsianti A, Saidi O. Multifeature Prostate Cancer Diagnosis and Gleason Grading of Histological Images, IEEE Transactions on Medical Imaging, 2007;26(10):1366-1378. doi: 10.109/TMI.2007.898536.
  • [16] Vahadane A, Peng T, Sethi A, Albarqouni S, Wang L, Baust M, Steiger K, Schlitter AM, Esposito I, Navab N. Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images, IEEE Transactions on Medical Imaging, 2016;35(8):1962-1971. doi:10.1109/TMI.2016.2529665.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ade21f4-c9c2-474d-9fc0-63fb349909a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.