PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applying CFD for studying the dynamic and thermal behavior of an indirect solar dryer: paramertric analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, an indirect solar dryer integrated thermal storage for drying figs. (Ficuscarica) is studied numerically. Unsteady turbulent airflow and heat transfer through a two-dimensional model is carried out for a typical day of August under the climatic conditions of Tlemcen (Algeria). Effects of air inlet size and thickness of the packed bed on the dynamic and thermal behaviors of the dryer with and without packed bed have been discussed. The study shows that: (1) Increase the inlet size from 0.04 m to 0.10 m can accelerate the extraction of air by about 13% and reduce the maximum crops temperature by about 14%. (2) The packed bed can reduce the mass flow rate extracted by 22% and the fluctuations of air temperature by 1.3%. (3) A packed bed with a thickness of 0.15 m can extend the operating time of the dryer up to 23%.
Rocznik
Strony
253--272
Opis fizyczny
Bibliogr. 31 poz., il. kolor., 1 rys., wykr.
Twórcy
autor
  • ETAP Laboratory, Department of Mechanics, University of Tlemcen, FT BP 230, 13000 Tlemcen, Algeria
autor
  • ETAP Laboratory, Department of Mechanics, University of Tlemcen, FT BP 230, 13000 Tlemcen, Algeria
autor
  • 2 IRTES-M3M - EA 7274, University of Technology of Belfort-Montbéliard, Sévenans, 90010 Belfort Cedex, France
Bibliografia
  • [1] Sodha, M. S., Bansal, N. K., Kumar, A., Bansal, P. K., Malik, M. A. S.: Solar Crop Drying, CRC Press: New York, U.S.A., 1987.
  • [2] Bala, B. K., Woods, J. L.: Simulation of indirect natural convection solar drying of rough rice, Solar Energy, 531, 259–266, 1994.
  • [3] Purohit, P., Kumar, A., Kandpal, T. C.: Solar drying vs. open sun drying: a framework for financial evaluation, Solar Energy, 80, 1568–79, 2006.
  • [4] Sharma, A., Chen, C. R., Lan, N. V.: Solar energy drying systems: a review, Renew Sustain Energy Review, 13, 1185–1210, 2009.
  • [5] Korti, A. N.: Numerical 3D heat flow simulations on double-pass solar collector with and without porous media, Journal of Thermal Engineering, 1, 10–23, 2015.
  • [6] Korti, A. N., Tlemsani, F. Z.: Experimental investigation of latent heat storage in a coil in PCM storage unit, Journal of Energy Storage, doi:10.1016/j.est.2015.12.010, In Press, 2015.
  • [7] Lalit, M. B., Santosh, S., Naik, S. N.: Solar dryer with thermal energy storage systems for drying agricultural food products: A review, Renewable and Sustainable Energy Reviews, 14, 2298–2314, 2010.
  • [8] Jain, D., Rajeev, K.: Performance evaluation of an inclined multi-pass solar air heater with in-built thermal storage on deep-bed drying application, Journal of Food Engineering, 65, 497–509, 2004.
  • [9] Jain, D.,: Modeling the system performance of multi-tray crop drying using aninclined multi-pass solar air heater with in-built thermal storage, Journal of Food Engineering, 71, 44–54, 2005.
  • [10] Berroug, F., Lakhal, E. K., El Omari, M., Faraji, M., El Qarnia, H.: Thermal performance of a greenhouse with a phase change material north wall, Energy and Buildings, 43, 3027–3035, 2011.
  • [11] Mathioulakis, E., Karathanos, V. T., Belessiotis, V. G.: Simulation of Air Movement in a Dryer by Computational Fluid Dynamics: Application for the Drying of Fruits, Journal of Food Engkwing, 36, 183–200, 1998.
  • [12] Mirade, P.S.: Prediction of the air velocity field in modern meat dryers using unsteady computational fluid dynamics CFD models, Journal of Food Engineering, 60, 41–48, 2003.
  • [13] Margaris, D. P., Ghiaus, A. G.: Dried product quality improvement by air flow manipulation in tray dryers, 75, 542–550, 2006.
  • [14] Wei, C., Man, Q.: Analysis of the heat transfer and airflow in solar chimney drying system with porous absorber, Renewable Energy, 63, 511–518, 2014.
  • [15] Romero, V. M., Cerezo, E., Garcia, M. I., Sanchez, M. H.: Simulation and validation of vanilla drying process in an indirect solar dryer prototype using CFD Fluent program, Energy Procedia, 57, 1651–1658, 2014
  • [16] Ghaffari, A., Mehdi, R., Modeling and Improving the Performance of Cabinet Solar Dryer Using Computational Fluid Dynamics, Int. J. Food Eng., 11, 157–172, 2015.
  • [17] Amanlou, Y., Zomorodian, A.: Applying CFD for designing a new fruit cabinet dryer, Food Engineering, 101, 8–15, 2010.
  • [18] Suhaimi, M., Sohif, M., Kamaruzzaman, M. H. R., Elias S.: Comparison of CFD Simulation on Tray Dryer System Between Porous and Solid Product, 7 WSEAS International Conference on Renewable Energy Sources RES', 13, 59–64, 2013.
  • [19] Goyal, R. K., Tiwari, G. N.: Parametric study of a reverse flat plate absorber cabinet dryer, A New Concept Solar Energy, 60, I, 41–48, 1997.
  • [20] Jain, D.: Modeling the performance of the reversed absorber with packed bed thermal storage natural convection solar crop dryer, Journal of Food Engineering, 78, 637–647, 2007.
  • [21] Asan, H., Sancarktar, Y. S.: Effect of wall’s thermophysical properties on time lag and decrement factor, Energy and Building, 28, 159–166, 1998.
  • [22] Trivittayasil, V., Tanaka, F., Hamanaka, D., Uchino, T.: Prediction of surface temperature of figs during infrared heating and its effect on the quality, Biosystems Engineering, 122, 16–22, 2014.
  • [23] Norton, T., Sun, D.: Computational fluid dynamics CFD – an effective and efficient design and analysis tool for the food industry: A review, Trends in Food Science & Technology, 17, 600–620, 2006.
  • [24] Babalis, S. J., Papanicolaou, E., Kyriakis, N., Belessiotis, V. G.: Evaluation of thin-layer drying models for describing drying kinetics of figs Ficuscarica, Food Engineering, 75, 205–214, 2006.
  • [25] Kiranoudis, C. T., Maroulis, Z. B, Tsami, E., Marinos-Kouris, D.: Equilibrium moisture content and heat of desorption of some vegetables, Journal of Food Engineering, 20, 1, 55–74, 1993.
  • [26] Capderou, M.: Atlas solaire de l’Algerie, tome 2: Aspect énergtique, Edition n◦ 2075.
  • [27] Watmuff, J. H., Charters, W. W. S., Proctor, D.: Solar and wind induced external coefficients for solar collectors, CooperationMediterraneenne pour l'Energie Solaire COMPLES, Revue Internationale d’Heliotechnique, 2nd Quarter, 56. 1977.
  • [28] Swinbank, W. C.: Long-wave radiation from clear skies, Quarterly Journal of the Royal Meteorological Society, 9, 339–348, 1963.
  • [29] Jyotirmay, M., Sanjay, M. A.: Summer performance of inclined roof solar chimney for natural ventilation, Energy and Buildings, 38, 1156–1163, 2006.
  • [30] Benkhelfellah, R., El Mokretar, S., Miri, R., Belhamel, M.: Séchoirs solaires. Etudes comparative de la cinétique de séchage des produits agroalimentaires dans des modèle de types direct et indirect, 12ième journée mondiale thermique Maroc, 2005.
  • [31] Météo Tlemcen Zenata: https://www.meteoblue.com/fr/meteo/prevision/semaine/tlemcen%20zenata alg%C3%A9rie 6296381
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3adce56d-a571-41ab-8acc-15ec5d64cf15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.