Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper discusses the influence of the Tvergaard parameters, qi, which are basic constants of the Gurson-Tvergaard- Needleman (GTN) material model, on the numerically simulated load-carrying capacity of tensile elements made of S235JR steel. The elements were considered to be under static tension at low initial stress triaxiality σm/σe = 1/3. Two sets of the Tvergaard parameters qi were analyzed: those typical of structural steels and those dependent on material strength properties. The results showed that the Tvergaard parameters, qi, had influence on the load-carrying capacity of tensile elements at low initial stress triaxiality. They affected the strength curves and the changes in the void volume fractions determined for S235JR steel elements
Czasopismo
Rocznik
Tom
Strony
100--107
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Department of Strength of Materials and Concrete Structures, Faculty of Civil Engineering and Architecture, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
- 1. Abaqus 6.10. Analysis User’s Manual, 2010, Dassault Systèmes Simulia Corporation, Providence.
- 2. Corigliano, A., Mariani, S. and Orsatti, B., 2000, “Identification of Gurson-Tvergaard material model parameters via Kalman filtering technique. I. Theory”, International Journal of Fracture, Vol. 104, No. 4, pp. 349- 373.
- 3. Faleskog, J., Gao, X. and Shih, C.F., 1998, “Cell model for nonlinear fracture analysis – I. Micromechanics calibration”, International Journal of Fracture, Vol. 89, No. 4, pp. 355-373.
- 4. Gurson, A. L., 1977, “Continuum theory of ductile rupture by void nucleation and growth: Part I – Yield criteria and flow rules for porous ductile media”, Journal of Engineering Materials and Technology, Transactions of the ASME Vol. 99, No. 1, pp. 2-15.
- 5. Hancock, J.W. and Mackenzie, A. C., 1976, “On the mechanisms of ductile failure in high-strength steel subjected to multi-axial stress-states”, Journal of Mechanics and Physics of Solids, Vol. 24, No. 2-3, pp. 147-160.
- 6. Kossakowski, P.G., 2010, “An analysis of the load-carrying capacity of elements subjected to complex stress states with a focus on the microstructural failure”, Archives of Civil and Mechanical Engineering, Vol. 10, No. 2, pp. 15-39.
- 7. Kossakowski, P.G., 2012a, “Simulation of ductile fracture of S235JR steel using computational cells with microstructurally-based length scales”, Journal of Theoretical and Applied Mechanics, Vol. 50, No. 2, pp. 589-607.
- 8. Kossakowski, P.G., 2012b, “Prediction of ductile fracture for S235JR steel using the Stress Modified Critical Strain and Gurson-Tvergaard-Needleman models”, Journal of Materials in Civil Engineering, Vol. 24, No. 12, pp. 1492- 1500.
- 9. Kossakowski, P.G., Trąmpczyński, W., 2012, “Microvoids evolution in S235JR steel subjected to multi-axial stress state”, Engineering Transactions, Vol. 60, No. 4, pp. 287– 314.
- 10. Kossakowski, P.G., 2012c, “Influence of initial porosity on strength properties of S235JR steel at low stress triaxiality”, Archives of Civil Engineering, Vol. 58, No. 3, pp. 293-308.
- 11. Kossakowski, P.G., 2012d, “Effect of initial porosity on material response under multi-axial stress states for S235JR steel”, Archives of Civil Engineering, Vol. 58, No. 4, pp. 445-462.
- 12. Kossakowski, P.G., 2012e, “The analysis of Tvergaard’s parameters of S235JR steel in high triaxiality”, Advances in Material Science, Vol. 12, No. 1, pp. 27-35.
- 13. Nahshon, K. and Hutchinson, J.W., 2008, “Modification of the Gurson Model for shear failure”, European Journal of Mechanics - A/Solids, Vol. 27, No.1, pp. 1-17.
- 14. Needleman, A. and Tvergaard, V., 1984, “An analysis of the ductile rupture in notched bars”, Journal of the Mechanics and Physics of Solids, Vol. 32, No. 6, pp. 461-490.
- 15. PN-EN 10002-1, 2004, Metallic materials – Tensile testing – Part 1: Method of test at ambient temperature, Polish Committee for Standardization, Warsaw.
- 16. PN-EN 1993-1-10, 2005, Eurocode 3 – Design of steel structures – Part 1: Material toughness and through-thickness properties, Polish Committee for Standardization, Warsaw.
- 17. Richelsen, A. B. and Tvergaard V., 1994, “Dilatant plasticity or upper bound estimates for porous ductile solids”, Acta Metallurgica et Materialia, Vol. 42, No. 8, pp. 2561-2577.
- 18. Ruggieri, C., 2004, “Numerical investigation of constraint effects on ductile fracture in tensile specimens”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 26, No. 2, pp. 190-199.
- 19. Sedlacek, G., Feldmann, M., Kühn, B., Tschickardt, D., Höhler, S., Müller, C., Hensen, W., Stranghöner, N. Dahl, W., Langenberg, P., Münstermann, S., Brozetti, J., Raoul, J., Pope, R. and Bijlaard, F., 2008, “Commentary and worked examples to EN 1993-1-10 “Material toughness and through thickness properties“ and other toughness oriented rules in EN 1993”, JRC Scientific and Technical Reports, European Commission Joint Research Centre, Office for Official Publications of the European Communities, Luxembourg.
- 20. Tvergaard, V., 1981, “Influence of voids on shear band instabilities under plane strain conditions”, International Journal of Fracture, Vol. 17, No. 4, pp. 389-407.
- 21. Tvergaard, V., 1989, “Material failure by void growth to coalescence”, Advanced in Applied Mechanics, Vol. 27, pp. 83-151.
- 22. Tvergaard, V. and Needleman, A., 1984, “Analysis of the cup-cone fracture in a round tensile bar”, Acta Metallurgica, Vol. 32, No. 1, pp. 157-169.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3adbc4da-9f49-4186-8607-b6c1eadbbaa5