PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomechanical properties of the thin PVD coatings defined by red blood cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The measurement of the strength of bonds between biomaterials and cells is a major challenge in biotribology since it allows for the identification of different species in adhesion phenomena. Biomaterials, such as diamond-like carbon (DLC), titanium, and titanium nitride, seem to be good candidates for future blood-contact applications. These materials were deposited as thin films by the hybrid pulsed laser deposition (PLD) technique to examine the influence of such surfaces on cell behavior. The biomaterial examinations were performed in static conditions with red blood cells and then subjected to a dynamical test to observe the cell detachment kinetics. The tests revealed differences in behavior with respect to the applied coating material. The strongest cell-biomaterial interaction was observed for the carbon-based materials compared to the titanium and titanium nitride. Among many tests, a radial flow interaction analysis gives the opportunity to analyze cell adhesion to the applied material with the high accuracy. Analysis of concentrates helped to select materials for further dynamic tests on blood using an aortic flow simulator. In this case, the platelet adhesion to the surface and their degree of activation was analyzed. The quality of the selected coating was tested using a scratch test. The analyses of the microstructure were done using high resolution transmission electron microscopy. The phase composition and the residual stress were analyzed using X-ray diffraction methods.
Rocznik
Strony
697--705
Opis fizyczny
Bibliogr. 31 poz., rys., wykr., tab., fot.
Twórcy
  • Institute of Metallurgy and Materials Science; Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland
autor
  • Institute of Metallurgy and Materials Science; Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland
  • Joanneum Research Forschungsges mbH, Institute of Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf, Austria
autor
  • Laboratoire des Matériaux et du Génie Physique, Grenoble Institute of Technology – Minatec, 3 Parvis Louis Néel, BP 257, 38016 Grenoble Cedex 1, France
autor
  • Department of Histology, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Cracow, Poland
autor
  • Institute of Metallurgy and Materials Science; Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland
Bibliografia
  • [1] R. Kustosz, M. Gawlikowski, K. Gorka, and A. Jaros, “Structure of research stand and evaluation method of blood-biomaterial reaction and mechanical strength of the coating”, in Nanostructural Materials for Implants and Cardiovascular Biomedical Devices, M-Studio, Zabrze, 2011.
  • [2] R. Major, “Material science in heart disease treatment”, in Nanostructural Materials for Implants and Cardiovascular Biomedical Devices, M-Studio, Zabrze, 2011.
  • [3] U.T. Seyfert, V. Biehl, and J. Schenk, “In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4”, Biomol. Eng. 19 (2), 91–96 (2002).
  • [4] M. Dadsetan, H. Mirzadeh, N. Sharifi-Sanjani, and P. Salehian, “In vitro studies of platelet adhesion on laser-treated polyethylene terephtalate surface”, J. Biomed. Mater. Res. 54, 540–546 (2001).
  • [5] N. Huang, P. Yang, and Y.X. Leng, “Hemocompatibility of titanium oxide films”, Biomaterials 24, 2177–2187 (2003).
  • [6] M. Mueller, B. Krolitzki, and B. Glasmacher, “Dynamic in vitro hemocompatibility testing – improving the signal tonoise ratio”, Biomed. Tech. 57, Suppl. 1 (2012).
  • [7] M. Otto, C.L. Klein, H. Koehler, M. Wagner, O. Roehrig, and C.J. Kirkpatrick, “Dymanic blood cell contact with biomaterials: validation of a flow chamber system according to international standards”, J. Mater. Sci. Mater. Med. 8, 119–129 (1997).
  • [8] D. Varon, I. Lashevski, B. Brenner, R. Beyar, N. Lanir, I. Tamarin, and N. Savion, “Cone and plate(let) analyzer: monitoring glycoprotein IIb/IIIa antagonists and von Willebr and disease replacement therapy by testing platelet deposition under flow conditions”, Am. Heart J. 135, 187–193 (1998).
  • [9] D.A. Jones, C.W. Smith, and L.V. Mclntire, “Methods for in vitro analysis of leukocyte adhesion under flow condition”, in Weir’s Handbook of Experimental Immunology, eds. L.A. Herzenberg, D.M. Weir, and C. Blackwell, Blackwell Science, Cambridge, 1996.
  • [10] T. Yago, J. Wu, C.D. Wey, A.K. Klopocki, C. Zhu, and R.P. McEver, “Catch bonds govern adhesion through L-selectin at threshold shear”, J. Cell Biology 166 (6), 913–923 (2006).
  • [11] J.M. Lackner, W. Waldhauser, R. Major, B. Major, and F. Bruckert, “Hemocompatible, pulsed laser deposited coatings on polymers”, Biomedizinische Technik 55, 57–64 (2010).
  • [12] L. Tobolski and A. Fee, “Macroindentation hardness testing”, ASM Handbook, Volume 8. Mechanical Testing and Evaluation, ASM International, Ohio, 2000.
  • [13] M. Demilly, Y. Brechet, F. Bruckert, and L. Boulange, “Kinetics of yeast detechment from controlled stainless steel surfaces”, Colloids Surf. B 51, 71–79 (2006).
  • [14] R.A. Haefer, Oberflächen- und Dünnschichttechnologie. Teil 1: Beschichten von Oberflächen. Springer, Berlin, 1987.
  • [15] C. Valfrè, G. Rizzoli, C. Zussa, P. Ius, E. Polesel, S. Mirone, T. Bottio, and G. Gerosa, “Clinical results of Hancock II versus Hancock Standard at long-term follow-up”, J. Thorac Cardiovasc Surg. 132, 595–601 (2006).
  • [16] M.A. Borger, J. Ivanov, S. Armstrong, D. Christie-Hrybinsky, C.M. Feindel, and T.E. David, “Twenty-year results of the Hancock II bioprosthesis”, J Heart Valve Dis. 15, 49–56 (2006).
  • [17] P. Totaro, N. Degno, A. Zaidi, A. Youhana, and V. Argano, “Carpentier-Edwards PERIMOUNT Magna bioprosthesis: a stented valve with stentless performance?”, J. Thorac Cardiovasc Surg. 130, 1668–74 (2005).
  • [18] F.C. Riess, R. Bader, E. Cramer, L. Hansen, B. Kleijnen, G. Wahl, J. Wallrath, S. Winkel, and N. Bleese, “Hemodynamic performance of the medtronic mosaic porcine bioprosthesis up to ten years”, Ann. Thorac Surg. 83, 1310–89 (2007).
  • [19] G. Cohen, G.T. Christakis, C.D. Joyner, C.D. Morgan, M. Tamariz, N. Hanayama, H. Mallidi, J.P. Szalai, M. Katic, V. Rao, S.E. Fremes, and B.S. Goldman, “Are stentless valves hemodynamically superior to stented valves? A prospective randomized trial”, Ann. Thorac Surg. 73, 767–78 (2002).
  • [20] M.A. Borger, K. Prasongsukarn, S. Armstrong, C.M. Feindel, and T.E. David, “Stentless aortic valve reoperations: a surgical challenge”, Ann. Thorac Surg. 84, 737–44 (2007).
  • [21] S. Lopez, P. Mathieu, P. Pibarot, S. Mohammadi, F. Dagenais, P. Voisine, J. Dumesnil, and D. Doyle, “Does the use of stentless aortic valves in a subcoronary position prevent patient-prosthesis-mismatch for small aortic annulus?” J. Card. Surg. 23, 331–5 (2008).
  • [22] D.S. Bach, N.D. Kon, J.G. Dumesnil, C.F. Sintek, and D.B. Doty, “Ten-year outcome after aortic valve replacement with the freestyle stentless bioprosthesis”, Ann. Thorac Surg. 80, 480–7 (2005).
  • [23] R.W. Emery, C.C. Krogh, K.V. Arom, A.M. Emery, K. Benyo-Albrecht, L.D. Joyce, and D.M. Nicoloff, “The St. Jude Medical cardiac valve prosthesis: a 25-year experience with single valve replacement”, Ann. Thorac Surg. 79, 776–82 (2005).
  • [24] R. Tominaga, K. Kurisu, Y. Ochiai, Y. Tomita, M. Masuda, S. Morita, and H. Yasui, “A 10-year experience with the Carbomedics cardiac prosthesis”, Ann Thorac Surg. 68, 784–9 (2005).
  • [25] J. Aagaard and J. Tingleff, “Fifteen years’ clinical experience with the CarboMedics prosthetic heart valve”, J. Heart Valve Dis. 14, 82–8 (2005).
  • [26] T. Takaseya, T. Kawara, S. Tokunaga, M. Kohno, Y. Oishi, and S. Morita, “Aortic valve replacement with 17-mm St. Jude Medical prostheses for a small aortic root in elderly patients”, Ann. Thorac Surg. 83, 2050–3 (2007).
  • [27] C. Stefanidis, A.M. Nana, D.D. Cannie‘re, M. Antoine, J.-L. Jansens, C.-H. Huynh, and J.-L. Le Clerc, “10-year experience with the ATS mechanical valve in the mitral position”, Ann. Thorac Surg. 79, 1934–8 (2005).
  • [28] T. Bottio, L. Caprili, D. Casarotto, and G. Gerosa, “Small aortic annulus: the hydrodynamic performances of five commercially available bileaflet mechanical valves”, J. Thorac Cardiovasc. Surg. 128, 457–62 (2004).
  • [29] A. Qiao and Y. Liu, “Medical-application-oriented hemodynamics simulation (I): blood flows in arteries”, J. Beijing University of Technology 02, CD-ROM (2008).
  • [30] http://www.bdbiosciences.com/external_files/pm/doc/tds/human/live/web_enabled/31255X_555483.pdf.
  • [31] http://www.bdbiosciences.com/external_files/pm/doc/tds/human/live/web_enabled/31794X_555523.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ad5bdbd-b00b-4d7b-8f41-67026993640c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.