PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Production of Potassium-Enriched Fertilizer Using the Complex Sorption and Membrane Technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The production of potassium-containing fertilizer using improved, complex method was researched. Cheapness and availability of the raw material (the natural zeolite, clinoptilolite from Dzegvi and Tedzami mines is used as a substrate and seawater – as a source of potassium ions) make this method very interesting and prospective for the countries with clinoptilolite stocks, located in the seaside regions and engaged in agrarian industry (Georgia, Greece, Romania, Bulgaria). It includes two technological processes: sorption and membranes ones. At the first stage, for intensification purpose electrodialysis was used for concentration of sea water. The optimal parameters for concentration of sea water were matched using the electrodialysis apparatus produced in the Institute workshop. In the produced concentrate of sea water, the index of potassium-ion concentration exceeds 4, being twice higher than the natrium-ion concentration index. At the second stage, selection of sea water ions was provided on the natural zeolite by so called dual-temperature ion exchange method: during sorption of potassium by clinoptilolite at low temperature the other ions pass into filtrate. The received potassium-enriched zeolite is a new type fertilizer: potassium containing therein passes into soil "as needed", when soil is impoverished.
Twórcy
  • Agrarian and Membrane Technologies Scientific Research Institute of Shota Rustaveli State University, Grishashvili St. 5, Batumi, 6010, Georgia
  • Agrarian and Membrane Technologies Scientific Research Institute of Shota Rustaveli State University, Grishashvili St. 5, Batumi, 6010, Georgia
  • Agrarian and Membrane Technologies Scientific Research Institute of Shota Rustaveli State University, Grishashvili St. 5, Batumi, 6010, Georgia
  • Agrarian and Membrane Technologies Scientific Research Institute of Shota Rustaveli State University, Grishashvili St. 5, Batumi, 6010, Georgia
autor
  • Agrarian and Membrane Technologies Scientific Research Institute of Shota Rustaveli State University, Grishashvili St. 5, Batumi, 6010, Georgia
Bibliografia
  • 1. Abdi G., Khrosh-Khui M. 2006. Effects of natural zeolite on growth and flowering of strawberry (Fragariaxananassa Duch.). International Journal of Agricultural Research, 1(4), 384–389. https://doi.org/10.3923/ijar.2006.384.389
  • 2. Allen E.R., Ming D.W., Hossner L.R., Henninger D.L., Galindo C. 1995. Growth and nutrient uptake of wheat in clinoptilolite‐phosphate rock substrates. Agronomy Journal, 87(6), 1052–1059. https://doi.org/10.2134/agronj1995.00021962008700060004x
  • 3. Andronikashvili T., Urushadze T.,. Eprikashvili L, Gamisonia M., Nakaidze E. 2008. Towards the biological activity of the natural zeolite – clinoptilolitecontaining tuff . Bull. Georg. Natl. Acad. Sci., 2(3), 99-107.
  • 4. Beruashvili T., Kheladze T., Takaishvili N., Dumbadze N., Sidamonidze S. 2008. Ion-exchange balance on the dzegvi natural clinoptilolite in binary systems. Sorption and Chromatographic Processes 8(5), 869-874.
  • 5. Dampilova B.V., Zonkhoeva E.L. 2013. Sorption of lanthanum ions by natural clinoptilolite tuff . Russian Journal of Physical Chemistry A, 87(8), 1353–1356. https://doi.org/10.1134/s0036024413080098
  • 6. FAO. 2019. World fertilizer trends and outlook to 2022. http://www.fao.org/3/ca6746en/ca6746en.pdf
  • 7. Girijaveni V. 2018. Zeolites are emerging soil amendments for improving soil physical and chemical properties in agriculture: A review. International Journal of Agriculture Environment and Biotechnology, 11(6). https://doi.org/10.30954/0974-1712.12.2018.5
  • 8. Gruener J.E., Ming D.W., Henderson K.E., Galindo C. 2003. Common ion effects in zeoponic substrates: wheat plant growth experiment. Microporous and Mesoporous Materials, 61(1–3), 223–230. https://doi.org/10.1016/s1387-1811(03)00371-8
  • 9. Gotsiridze R., Loria L., Meparishvili N., Beruashvili T. 2009. Concentration and separation of sea water electrodialysis treatment products with dual temperature ion-exchange method using the natural zeolite. Sorption and Chromatographic Processes, 9(2), 254-260.
  • 10. Gotsiridze R., Mkheidze N., Kontselidze L., Kontselidze Z. 2018. Concentration of sea water by electrodialysis for production of dry sea salt. In: Ukraine-EU. Innovations in Education, Technology, Business and Law. Collection of International Scientific Paper. Slovak Republic, 100-102.
  • 11. Ivanov V., Timofeevskaja V., Gavlina O., Gorshkov V. 2003. Dual-temperature reagent-less ion-exchange separations of alkali metal salts on zeolites. Microporous and Mesoporous Materials, 65(2–3), 257–265. https://doi.org/10.1016/j.micromeso.2003.08.005
  • 12. Khamizov R.K., Ivanov V.A., Madani A.A. 2010. Dual-temperature ion exchange: A review. Reactive and Functional Polymers, 70(8), 521–530. https://doi.org/10.1016/j.reactfunctpolym.2010.04.002
  • 13. Khamizov R.K., Muraviev D., Warshavsky A. 1995. Recovery of valuable mineral components from seawater by ion-exchange and sorption methods. In: Ion Exchange and Solvent Extraction. J.A.Marinsky and Y. Marcus (Eds). New York: Marsel Dekker Inc. Chapter, 3, 93-148.
  • 14. Khamizov R.K., Muraviev D., Tikhonov N.A., Krachak A.N., Zhiguleva T.I., Fokina O.V. 1998. Clean Ion-Exchange Technologies. Recovery of high-purity magnesium compounds from seawater by an ionexchange isothermal supersaturation technique. Industrial & Engineering Chemistry Research, 37(6), 2496–2501. https://doi.org/10.1021/ie9707735
  • 15. Kozhevnikova N.M., Ermakova E.P. 2008. A study of sorption of samarium(III) ions by natural clinoptilolite-containing tuff. Russian Journal of Applied Chemistry, 81(12), 2095–2098. https://doi.org/10.1134/s1070427208120094
  • 16. Krachak A., Khamizov R., Pinaeva I., Bichkov A. 2008. Research of ion-exchange process for production of oversaturated solution of iodine compounds. Sorption and Chromatographic Processes, 8(1), 11-22.
  • 17. Lukin A., Mareva O., Selavkin S. 2015. The influence of straw on fertile characteristics of soil and biological yield capacity of barley on the leached chernozem in the Central black earth region. Vestnik of Ulyanovsk State Agricultural Academy, 4(32), 36–39. https://doi.org/10.18286/1816-4501-2015-4-36-39
  • 18. Mkheidze N., Gotsiridze R., Kontselidze L., Mkheidze S., Davitadze R. 2021. Improvement of technological modes of electrodialysis apparatus for treatment of chromium-containing waste waters. Ecological Engineering & Environmental Technology, 22(5), 47-54. https://doi.org/10.12912/27197050/139409
  • 19. Mumpton F.A. 1999. La roca magica: Uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Sciences, 96(7), 3463–3470. https://doi.org/10.1073/pnas.96.7.3463
  • 20. Nishihama S., Onishi K., Yoshizuka K. 2011. Selective recovery process of lithium from seawater using integrated ion exchange methods. Solvent Extraction and Ion Exchange, 29(3), 421–431. https://doi.org/10.1080/07366299.2011.573435
  • 21. Okudjava N., Beruashvili T., Mamukashvili N. 2008. Production of potassium-enriched natural zeolite by dual temperature method using seawater. Sorption and Chromatographic Processes, 8(5), 875-880.
  • 22. Pisanu A., Chessa F., Meloni S., Fadda N., Vacca M., Sanna F., Corda M. 2012. Use of urea-derived ammonium loaded zeolites in zeoponic cultivation. Acta Horticulturae, 927, 81–88. https://doi.org/10.17660/actahortic.2012.927.8
  • 23. Rasyid F., Aisyah, Irnaningsih, Masri M. 2021. Desalination of sea water using activated zeolite by chloide acid in tropical area based on column iion exchange method. AMINA, 1(3), 114–119. https://doi.org/10.22373/amina.v1i3.420
  • 24. Shimzu T., Wajima T., Ikegami Y. 2007. Ion exchange properties of natural zeolite in the preparation of an agricultural cultivation solution from seawater. Journal of Ion Exchange, 18(4), 540–543. https://doi.org/10.5182/jaie.18.540
  • 25. Szatanik-Kloc A., Szerement J., Adamczuk A., Józefaciuk G. 2021. Effect of low zeolite doses on plants and soil physicochemical properties. Materials, 14(10), 2617. https://doi.org/10.3390/ma14102617
  • 26. Tikhonov N.A., Fokina O.V., Sokol’skii D.A., Khamizov R.K. 1997. A new nonisothermal ionexchange method for enrichment of solutions. Russian Chemical Bulletin, 46(12), 2053–2059. https://doi.org/10.1007/bf02495251
  • 27. Vilcek J., Torma S., Adamisin P., Hronec O. 2013. Nitrogen sorption and its release in the soil after zeolite application. Bulg. J. Agric. Sci., 19, 228-234.
  • 28. Wibowo E., Rokhmat M., Sutisna, Khairurrijal, Abdullah M. 2017. Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics. Desalination, 409, 146–156. https://doi.org/10.1016/j.desal.2017.01.026
  • 29. Zeoponix.com. http://www.zeoponix.com/zeolite.htm
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ad0972b-2ad9-4cb7-b694-92bad877bbe9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.