PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recovery of rare earths and lithium from rare earth molten salt electrolytic slag by lime transformation, co-leaching and stepwise precipitation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rare earth molten salt electrolytic slag (REMSES) has recently attracted significant attention due to its potential environmental hazards and high content of rare earths and lithium, leading to a surge in recycling efforts. In this study, we propose and demonstrate a novel and straightforward process for the simultaneous extraction of rare earths and lithium from REMSES through lime transformation and sulfuric acid leaching at low temperatures. Firstly, during the lime transformation process, REMSES is converted into hydroxides that can be easily dissolved in acids. Secondly, REEs and Li present in the slag are co-extracted using a conditional sulfuric acid leaching method, resulting in 95.72% REEs leaching efficiency and 99.41% Li leaching efficiency under optimal conditions. Finally, REEs and Li in the solution are precipitated using oxalic acid and trisodium phosphate with precipitation efficiencies of 99.02% for REEs and 94.85% for Li respectively. This innovative process enables the conversion of REEs and lithium from REMSES into high-purity products (a mixture of REOs with 99.31% purity; Li3PO4 with 98.93% purity), thereby facilitating their valuable utilization.
Rocznik
Strony
art. no. 186333
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Yichun 336000, China
autor
  • School of Energy Science and Engineering, Harbin Institute of Technology, Haerbin 150006, China
autor
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Yichun 336000, China
autor
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Yichun 336000, China
autor
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Yichun 336000, China
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology, Ganzhou 341000, China
Bibliografia
  • CAI, B., LIU, H., KOU, F., YANG, Y., YAO, B., CHEN, X., WONG, D., ZHANG, L., LI, J., KUANG, G., 2018. Estimating perfluorocarbon emission factors for industrial rare earth metal electrolysis. Resour Conserv Recy. 136, 315-323.
  • CHEN, J., SUN, S., TU, G., & XIAO, F., 2023. Review of efficient recycling and resource utilization for rare earth molten salt electrolytic slag. Miner Eng. 204, 108425.
  • CHEN, L., XU, J., YU, X., TIAN, L., WANG, R., XU, Z., 2021. Thermodynamics and Kinetics of Sulfuric Acid Leaching Transformation of Rare Earth Fluoride Molten Salt Electrolysis Slag. Front Chem. 9, 574722.
  • CHEN, X., SUN Y., WANG, L., QU,X., ZHAO, Y., XIE, H., WANG, D., YIN, H., 2023. Electrochemically recycling degraded superalloy and valorizing CO2 in the affordable borate-modified molten electrolyte. Tungsten. 1-12.
  • DUAN, W., WANG, Y., LI, R., REN, Z., ZHOU, Z., 2024. Selective extraction of lithium from high magnesium/lithium ratio brines with a TBP–FeCl3–P204–kerosene extraction system. Sep Purif. Technol. 328, 125066.
  • DUSHYANTHA, N., BATAPOLA, N., ILANKOON, I. M. S. K., ROHITHA, S., PREMASIRI, R., ABEYSINGHE, B., RATNAYAKE, NALIN., DISSANAYAKE, K., 2020. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol Rev. 122, 103521.
  • FENG, B,. ZHAO, Z., JIA, Y., AN, J., WANG, M., 2023. Optimal V2O3 extraction by sustainable vanadate electrolysis in molten salts. Tungsten. 1-9.
  • General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. 2020. Rare earth metals and their compounds—Determination of total rare earth content. (GB/T 14635-2020).
  • GEORGIOS C., KONSTANTINOS I. V., BAKLAVARIDIS A., BENETIS P., 2015. Rare Earth Elements: Industrial Applications and Economic Dependency of Europe. Procedia Comput. Sci. 24, 126-135.
  • GU, Y., LIU, J., QU, S., DENG, Y., HAN, X., HU, W., ZHONG, C., 2017. Electrodeposition of alloys and compounds from high-temperature molten salts. J. Alloy Compd. 690, 228-238.
  • HU, H., WANG, J., 2021. Selective extraction of rare earths and lithium from rare earth fluoride molten-salt electrolytic slag by nitration. Hydrometallurgy. 200: 105552.
  • JI, B., LI, Q., ZHANG,W., 2022. Leaching recovery of rare earth elements from the calcination product of a coal coarse refuse using organic acids. J. Rare Earth. 40(02), 318-327.
  • LAI, Y., LI, J., ZHU, S., LIU, K., XIA, Q., HUANG, M., HU, G., ZHANG, H., QI, T., 2023. Recovery of rare earths, lithium, and fluorine from rare earth molten salt electrolytic slag by mineral phase reconstruction combined with vacuum distillation. Sep Purif Technol. 310, 123105.
  • LI, M., Liu, Z., Wu, J., HU, Y., 2009. Element and analytical Chemistry of earth elements, Chemical Industry Press.
  • LIANG, Y., LI, Y., XUE, L., ZOU, Y., 2018. Extraction of rare earth elements from fluoride molten salt electrolytic slag by mineral phase reconstruction. J. Clean Prod. 177(3), 567-572.
  • LIU, H., AZIMI, G., 2021. Process analysis and study of factors affecting the lithium carbonate crystallization from sulfate media during lithium extraction. Hydrometallurgy. 199, 105532.
  • LIU, Y., GAO, F., CHEN, T., WANG, C., HU, K., ZHANG, C., HUANG, Z., LI, X., WAN, Y., 2023. Effective recovery of rare earth and fluorine from REF3 smelting slag by a mechanochemical process. Sep Purif Technol. 316, 123832.
  • LIU, Z., ZHOU, H., LI, W., LUO, X., WANG, J., LIU, F., 2022. Separation and coextraction of REEs and Fe from NdFeB sludge by co-leaching and stepwise precipitation. Sep Purif. Technol. 282, 119795.
  • MULWANDA, J., SENANAYAKE, G., OSKIERSKI, H. C., ALTARAWNEH, M., DLUGOGORSKI, B. Z., 2023. Extraction of lithium from lepidolite by sodium bisulphate roasting, water leaching and precipitation as lithium phosphate from purified leach liquors. Hydrometallurgy. 222, 106139.
  • Outokumpu Technology Company, 2012. HSC Chemistry 6.0 software.
  • PRINCE, S., AVIMANYU D., COURTNEY Y., 2021. Extraction and optimization of neodymium from molten fluoride electrolysis. Separation and Purification Technology. 256, 117770.
  • SU, J., Xu, R.; NI, S., LI, F., SUN, X., 2020. A cost-effective process for recovering thorium and rare earths from radioactive residues. J. Cleaner Prod. 254, 119931.
  • SUN, H., WANG, T., Li, C., YANG, Y., 2022. Recycling rare earth from ultrafine NdFeB waste by capturing fluorine ions in wastewater and preparing them into nano-scale neodynium oxyfluoride. J. Rare Earth. 40(5), 815-821.
  • TIAN, L., CHEN, L., GONG, A., WU, X., CAO, C., XU, Z., 2021. Recovery of rare earths, lithium and fluorine from rare earth molten salt electrolytic slag via fluoride sulfate conversion and mineral phase reconstruction. Minerals Engineering. 70, 106965.
  • TONG Z., HU X., WEN H., 2022. Effect of roasting activation of rare earth molten salt slag on extraction of rare earth, lithium and fluorine. J. Rare Earth. 41(2), 300-308.
  • WANG, J., CUI J., WANG, X., QIN, X. Inorganic chemistry. Higher Education Press, 2018.
  • WANG, J., HU, H., 2021. Selective extraction of rare earths and lithium from rare earth fluoride molten-salt electrolytic slag by sulfation. Miner Eng. 160, 106711.
  • WU, H., YAN, H., LIANG, Y., QIU, S., ZHOU, X., ZHU, D., QIU, T., 2023. Rare earth recovery from fluoride molten-salt electrolytic slag by sodium carbonate roasting-hydrochloric acid leaching. J. Rare Earths. 41(8), 1242-1249.
  • WU, L., ZHANG, J., HUANG, Z., ZHANG, Y., XIE, F., ZHANG, S., FAN, H., 2023. Extraction of lithium as lithium phosphate from bauxite mine tailings via mixed acid leaching and chemical precipitation. Ore Geol Rev. 105621.
  • XING P., LI, H., YE, C., ZHONG, L., 2022. Recovery of Rare-Earth Elements from Molten Salt Electrolytic Slag by Fluorine Fixation Roasting and Leaching. J Sustain Metall. 8(1),522-531.
  • YANG, D., YU, M., MUBULA, Y., YUAN, W., HUANG, Z., LIN, B., MEI, G., QIU, T., 2023. Recovering rare earths, lithium and fluorine from rare earth molten salt electrolytic slag using sub-molten salt method. J. Rare Earth. 1002-0721.
  • YANG, Y., LI, L., XIAO, M., NIU, F., 2019. Transformation mechanism and leaching performance of rare earth fluoride molten salt slag in the process of Na2CO3-roasting. J. Central South Univ.(Science and Technology). 50(5), 1035-1041.
  • YANG, Y., WEI, T., XIAO, M., NIU, F., SHEN, L., 2020. Rare earth recovery from fluoride molten-salt electrolytic slag by borax roasting-hydrochloric acid leaching. JOM. 72, 939-945.
  • YANG, Z., XIAO, F., SUN, S., ZHONG, H., TU, G., 2023. REEs recovery from molten salt electrolytic slag: Challenges and opportunities for environmentally friendly techniques. Journal of Rare Earths. 1002-0721.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3acd8781-09b2-47da-b3c2-7aadf98fdc7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.