PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of pressure-loss evaluation fidelity in turbulent energy dissipation models of poppet check valves using computational fluid dynamics (CFD) software

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Check valves are critical components of fluid systems and have various applications, including house appliances. This article presents a methodology for mapping geometry-specific constriction pressure loss as a function of flow and turbulence in a check valve. This study aimed to gain insight on which Ansys Fluent available turbulent energy dissipation model should be used for further design optimization. This methodology consists of a statistical comparison of computational fluid dynamics (CFD) simulation results obtained using the turbulent energy dissipation models. The key components of the simulation process are discussed. The study’s main results are a comparison of empirical results among flow models’ estimated pressure loss, shown as a function of flow rate in specific geometry and identification of the most suitable model for the considered application. This study concludes that the K-Epsilon (Standard) model best represents the empirically measured behavior of naturally occurring flow energy losses in the considered geometry.
Rocznik
Tom
Strony
19--31
Opis fizyczny
Bibliogr. 22 poz., rys., tab., zdj.
Twórcy
  • Sanhua-Aweco, ul. Turyńska 80, 43-100 Tychy, Poland
  • Silesian University of Technology in Gliwice
  • Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice
  • Faculty of Aerospace Engineering, Delft University of Technology, Netherlands
Bibliografia
  • Computational Fluid Dynamics (CFD) Software Market Size & Share Analysis 2023-2030. n.d. Retrieved from https://www.marketwatch.com/press-release/computational-fluid-dynamics-cfd-software-market-size-share-analysis-2023-2030-2023-04-19 (02.05.2023).
  • Forging the Digital Twin in Discrete Manufacturing: A Vision for Unity in the Virtual and Real Worlds. n.d. Retrieved from https://www.lnsresearch.com/research-library/research-articles/ebook-forging-the-digital-twin-in-discrete-manufacturing-a-vision-for-unity-in-the-virtual-and-real-worlds (05.06.2023).
  • EN 61770:2009/A1:2019. Electric Appliances Connected to the Water Mains – Avoidance of Backsiphonage and Failure of Hose-Sets. n.d.
  • FILO G., LISOWSKI E., RAJDA J. 2021. Design and Flow Analysis of an Adjustable Check Valve by Means of CFD Method. Energies, 14(8): 2237. https://doi.org/10.3390/en14082237
  • GOMEZ I., GONZALEZ-MANCERA A., NEWELL B., GARCIA-BRAVO J. 2019. Analysis of the Design of a Poppet Valve by Transitory Simulation. Energies, 12(5): 889. https://doi.org/10.3390/en12050889
  • HAYNES H.D. 1992. Evaluation of Check Valve Monitoring Methods. Nuclear Engineering and Design, 134(2–3): 283294. https://doi.org/10.1016/0029-5493(92)90146-M
  • HUOVINEN M., KOLEHMAINEN J., KOPONEN P., NISSILÄ T., SAARENRINNE P. 2015. Experimental and Numerical Study of a Choke Valve in a Turbulent Flow. Flow Measurement and Instrumentation, 45: 151-161. https://doi.org/10.1016/j.flowmeasinst.2015.06.005
  • LANEY M., FARRELL R. 2018. Piston-Lift Check Valve Flow Verification Using CFD. In: ASME 2018 Pressure Vessels and Piping Conference. Volume 7: Operations, Applications, and Components. Prague. https://doi.org/10.1115/PVP2018-84672
  • LISOWSKI E., Filo G. 2017. Analysis of a Proportional Control Valve Flow Coefficient with the Usage of a CFD Method. Flow Measurement and Instrumentation, 53: 269-278. https://doi.org/10.1016/j.flowmeasinst.2016.12.009
  • LISOWSKI E., FILO G., RAJDA J. 2015. Pressure Compensation Using Flow Forces in a Multi-Section Proportional Directional Control Valve. Energy Conversion and Management, 103: 1052-1064. https://doi.org/10.1016/j.enconman.2015.07.038
  • MCELHANEY K.L. 2000. An Analysis of Check Valve Performance Characteristics Based on Valve Design. Nuclear Engineering and Design, 197(1–2): 169-182. https://doi.org/10.1016/S0029-5493(99)00264-2
  • NOVAK N., PRŠIĆ D., FRAGASSA Ch., STOJANOVIĆ V., PAVLOVIC A. 2017. Simulation of Hydraulic Check Valve for Forestry Equipment. International Journal of Heavy Vehicle Systems, 24(3): 260. https://doi.org/10.1504/IJHVS.2017.084875
  • PARK S-H. 2009. Development of a proportional poppet-type water hydraulic valve. Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science, 223(9): 2099-2107. https://doi.org/10.1243/09544062JMES1380
  • PECIAK M., SKARKA W. 2022. Assessment of the Potential of Electric Propulsion for General Aviation Using Model-Based System Engineering (MBSE) Methodology. Aerospace, 9(2): 74. https://doi.org/10.3390/aerospace9020074
  • RAMANATH H.S., CHUA C.K. 2006. Application of Rapid Prototyping and Computational Fluid Dynamics in the Development of Water Flow Regulating Valves. The International Journal of Advanced Manufacturing Technology, 30(9–10): 828–35. https://doi.org/10.1007/s00170-005-0119-5
  • RITURAJ R., SCHEIDL R. 2023. Towards Digital Twin Development of Counterbalance Valves: Modelling and Experimental Investigation. Mechanical Systems and Signal Processing, 188: 110049. https://doi.org/10.1016/j.ymssp.2022.110049
  • SIBILLA S., GALLATI M. 2008. Hydrodynamic Characterization of a Nozzle Check Valve by Numerical Simulation. Journal of Fluids Engineering, 130(12): 121101. https://doi.org/10.1115/1.3001065
  • TURESSON M. 2011. Dynamic Simulation of Check Valve Using CFD and Evaluation of Check Valve Model in RELAP5. Master of Science Thesis (Nuclear Engineering). Department of Chemistry and Bioscience Division of Chemical Reaction Engineering. Chalmers University of Technology, Göteborg. Retrieved from https://publications.lib.chalmers.se/records/fulltext/142017.pdf
  • WRIGHT L., DAVIDSON S. 2020. How to Tell the Difference between a Model and a Digital Twin. Advanced Modeling and Simulation in Engineering Sciences, 7(1): 13. https://doi.org/10.1186/s40323-020-00147-4
  • YANG Q., ZHANG Z., LIU M., HU J. 2011. Numerical Simulation of Fluid Flow inside the Valve. Procedia Engineering, 23: 543–50. https://doi.org/10.1016/j.proeng.2011.11.254
  • YE J., ZHAO Z., ZHENG J., SALEM S., YU J., CUI J., JIAO X. 2020. Transient Flow Characteristic of High-Pressure Hydrogen Gas in Check Valve during the Opening Process. Energies, 13(16): 4222. https://doi.org/10.3390/en13164222
  • ŻYŁKA M., MARSZAŁEK N., ŻYŁKA W. 2023. Numerical Simulation of Pneumatic Throttle Check Valve Using Computational Fluid Dynamics (CFD). Scientific Reports, 13(1): 2475. https://doi.org/10.1038/s41598-023-29457-4
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3acc09fb-3131-47c6-b177-7a883e5bf294
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.