PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the Molecular Structure and Molecular Weight of Poly(Vinylidene Fluoride-Chlorotrifluoroethylene) Copolymers on the Characteristic Properties of TATB-based Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) based composites with different molecular weights and molecular structures of poly(vinylidene fluoride-chlorotrifluoroethylene) (poly(VDF-CTFE) binder were studied to investigate their effect on the physical, thermal, mechanical and explosive properties. The poly(VDF-CTFE) with three different kinds of molecular weights (FKM1, FKM2 and FKM3 samples) and three different kinds of molar ratios of VDF and CTFE (FKM4, FKM5and FKM6) was chosen as the polymeric binder. The experimental results indicated that all of these kinds of TATB-based composites do not show any measurable changes in the particle density, detonation velocity and impact sensitivity. The thermal data revealed that weight loss occurs in two steps and, that the thermal stability deceases slightly with an increase in the molecular weight. On other hand, the weight loss occurred in a single step and the thermal stability increases slightly with an increase in the molar ratio of the CTFE to VDF monomer units. The adhesion properties between the two phases of TATB crystals and polymeric matrices rely on the properties of the interface, which is expressed in terms of the mechanical properties. The storage modulus decreases with increasing molecular weight. On other hand, an increase in the CTFE to VDF molar ratio in the poly(VDF-CTFE) binder remarkably improves the mechanical strength. FKM5-9505 shows a significant reduction in creep deformation and dramatically increases the elongation failure, compared to those of the FKM4-9505 sample. Finally, SEM observations clearly suggested that the coating of the polymer matrix onto the surface of the TATB crystals is clearly demonstrated.
Rocznik
Strony
428--450
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
autor
  • Terminal Ballistics Research Laboratory, Explosive Group, Sector 30, Chandigarh, India
  • Terminal Ballistics Research Laboratory, Explosive Group, Sector 30, Chandigarh, India
autor
  • Terminal Ballistics Research Laboratory, Explosive Group, Sector 30, Chandigarh, India
Bibliografia
  • [1] Rice, S.F.; Simpson, R.L. The Unusual Stability of TATB: a Review of the Scientific Literature. Lawrence Livermore National Laboratory, Report UCRL-LR-103683, Livermore, CA, 1990.
  • [2] Dobratz, B.M. The Insensitive High Explosive Triaminotrinitrobenzene (TATB): Development and Characterization – 1888 to 1994. Los Alamos Scientific Laboratory, Report LA-13014-H, Los Alamos, NM, 1995.
  • [3] Cooper, P.W.; Kurowski, S.R. Introduction to the Technology of Explosives. Wiley-VCH, New York, 1996, pp. 21-23.
  • [4] Tarver, C.M.; Koerner, J.G. Effects of Endothermic Binders on Times to Explosion of HMX- and TATB-Based Plastic Bonded Explosives. J. Energ. Mater. 2007, 26: 1-28.
  • [5] Singh, A.; Kumar, M.; Soni, P.K.; Singh, M.; Srivastava, A. Mechanical and Explosive Properties of Plastic Bonded Explosives Based on Mixture of HMX and TATB. Def. Sci. J. 2013, 63: 622-9.
  • [6] Traver, C.M. Corner Turning and Shock Desensitization Experiments Plus Numerical Modelling of Detonation Waves in the Triaminotrinitrobenzene Based Explosive LX-17, J. Phys. Chem. A. 2010, 114: 2727-2736.
  • [7] Willey, T.M.; Hoffman, D.M.; Van Buuren, T.; Lauderbach, L.; Gee, R.H.; Maiti, A.; Overturf, G.E.; Fried, L.E.; Ilavsky, J. Changes in Pore Size Distribution upon Thermal Cycling of TATB-Based Explosives Measured by Ultra-Small Angle X-ray Scattering. Propellants, Explos., Pyrotech. 2009, 34: 406-414.
  • [8] Kolb, J.R.; Rizzo, H.F. The Growth of 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB). I. Anisotropic Thermal Expansion of TATB. Lawrence Livermore National Laboratory, Livermore, UCRL-8-1-189, US, 1978.
  • [9] Rizzo, H.F.; Humphrey, J.R.; Kolb, J.R. Growth of 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB). II. Control of Growth by Use of High Tg Polymeric Binders. Lawrence Livermore National Laboratory, UCRL-52662, Livermore, 1979.
  • [10] Humphrey, J.R.; Rizzo, H.F. A New TATB Plastic-Bonded Explosive, Lawrence Livermore National Laboratory, UCRL-82675 rev. 1, Livermore, 1979.
  • [11] Boddua, V.M.; Viswanathb, D.S.; Ghosh, T.K.; Damavarapu, R. 2,4,6-Triamino-1,3,5-trinitrobenzene (TATB) and TATB-based Formulations – A Review. J. Hazard. Mater. 2010, 181: 1-8.
  • [12] Sun, J.; Kang, B.; Zhang, H.; Liu, Y.; Xia, Y.; Yao, Y.; Liu, X. Investigation on Irreversible Expansion of 1,3,5-Triamino-2,4,6-trinitrobenzene Cylinder. Cent. Eur. J. Energ. Mater. 2011, 8(1): 69-79.
  • [13] Thompson, D.G.; Schwarz, R.B.; Brown, G.W.; DeLuca, R. Time‐Evolution of TATB‐Based Irreversible Thermal Expansion (Ratchet Growth). Propellants, Explos., Pyrotech. 2015, 40(4): 558-565.
  • [14] Singh, A.; Sharma, T.C.; Narang, J.K.; Kishore, P. Thermal Decomposition and Kinetics of Plastic Bonded Explosives Based on Mixture of HMX and TATB with Polymer Matrices. Def. Technol. 2017, 13: 22-32.
  • [15] Nouguez, B., Mahe, B.; Vignaud, P.O. PBX Related Technologies for IM Shells and Warheads. Sci. Technol. Energ. Mater. 2009, 70(5-6):135-139.
  • [16] Borman, S. Advanced Energetic Materials Emerge for Military and Space Applications. J. Chem. Eng. News. 1994, 73: 18-22.
  • [17] Willey, T.M.; DePiero, S.C.; Hoffman, D.M. A Comparison of New TATBs, FK-800 binder and LX-17-like PBXs to Legacy Materials. Korean International Symposium on High Energy Materials Incheon, Proc., 1st, LLNL-CONF-412929, South Korea, 2009.
  • [18] Singh, A.; Sharma, T.C.; Kishore, P. Thermal Degradation Kinetics and Reaction Models of 1,3,5-Triamino-2,4,6-Trinitrobenzene-based Plastic-Bonded Explosives Containing Fluoropolymer Matrices. J. Therm. Anal. Calorim. 2017, 129: 1403-1414.
  • [19] Singh, A.; Kumar, R.; Soni, P.K.; Singh, V. Compatibility and Thermokinetics Studies of Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine with Polyetherbased Polyurethane Containing Different Curatives. J. Energetic Mater. 2019, 37:141-153.
  • [20] Tarver, C.M.; Koerner, J.G. Effects of Endothermic Binders on Times to Explosion of HMX- and TATB-Based Plastic Bonded Explosives. J. Energ. Mater. 2008, 26:1-28.
  • [21] Hoffman, D.M. Dynamical Signatures of Aged LX-17-1 Plastic Bonded Explosives. J. Energ. Mater. 2001, 19: 163-193.
  • [22] Xiao, J.; Ma, X.; Zhu, W.; Huang, Y.; Xiao, H.; Huang, H.; Li, J. Molecular Dynamics Simulations of Polymer‐Bonded Explosives (PBXs): Modeling, Mechanical Properties and Their Dependence on Temperatures and Concentrations of Binders. Propellants, Explos., Pyrotech. 2007, 32: 355-359.
  • [23] Singh, A.; Singla, P.; Sahoo, S.C.; Soni, P.K. Compatibility and Thermal Decomposition Behavior of an Epoxy Resin with Some Energetic Compounds. J. Energ. Mater. 2020, https://doi.org/10.1080/07370652.2020.1727997.
  • [24] Singh, A.; Sharma, T.C.; Singh, V.; Mukherjee, N. Studies on the Thermal Stability and Kinetic Parameters of Naturally Aged Octol Formulation. J. Therm. Anal. Calorim. 2020, https://doi.org/10.1007/s10973-020-09750-4.
  • [25] Singh, A.; Kaur, G.; Sarkar, C; Mukherjee, N. Investigations on Chemical, Thermal Decomposition Behavior, Kinetics, Reaction Mechanism and Thermodynamic Properties of Aged TATB. Cent. Eur. J. Energ. Mater. 2018, 15(2): 258-282.
  • [26] Meares, P. Polymers: Structure and Bulk Properties. Van Nostrand, New York, 1965, pp. 118.
  • [27] McCrum, N.G.; Read, B.E.; Williams, G. An Elastic and Dielectric Effects in Polymeric Solids. John Wiley and Sons, London, 1967.
  • [28] Lin, C.; Liu, S.; Huang Z.; Liu, J. The Dependence of the Non-Linear Creep Properties of TATB-based Polymer Bonded Explosives on the Molecular Structure of the Polymer Binder: (II) Effects of the Co-monomer Ratio in Fluoropolymers. RSC Adv. 2015, 5(73): 59804-59811.
  • [29] Lin, C.; Liu, J.; Gong, F.; Zeng, G.; Huang, Z.; Pan, L.; Zhang, S.; Liu, S. High-Temperature Creep Properties of TATB-based Polymer Bonded Explosives Filled with Multi-Walled Carbon Nanotubes. RSC Adv. 2015, 5: 21376-21383.
  • [30] Lin, C.; Liu, J.; He, G.; Chen, L.; Huang, Z.; Gong, F.; Liua, Y.; Shijun Liu, S. Non-linear Viscoelastic Properties of TATB-Based Polymer Bonded Explosives Modified by a Neutral Polymeric Bonding Agent. RSC Adv. 2015, 5: 35811-35820.
  • [31] Lin, C.; Liu, S.; Tu, X.; Huang, Z.; Li, Y.; Pan, L.; Zhang, J. Enhancement of Creep Properties of TATB‐Based Polymer‐Bonded Explosive Using Styrene Copolymer. Propellants, Explos., Pyrotech. 2015, 40: 189-196.
  • [32] Lin, C.; Liu, S.; Huang, Z.; He, G.; Gong, F.; Liu, Y.; Liu, J. The Dependence of the Non-Linear Creep Properties for TATB-Based Polymer Bonded Explosives on the Molecular Structure of Polymer Binder. RSC Adv. 2015, 5: 30592-30601.
  • [33] Lin, C.; He, G.; Liu, J.; Huang, Z.; Pan, L.; Zhang, J.; Liu, S. Enhanced Non-Linear Viscoelastic Properties of TATB-based Polymer Bonded Explosives Filled with Hybrid Graphene/Multiwalled Carbon Nanotubes. RSC Adv. 2015, 5: 94759-94767.
  • [34] Lin, C.; Liu, J.; He, G.; Yang, Z.; Pan, L.; Liu, S.; Li, J.; Guo, S. Effect of Crystal Quality and Particle Size of HMX on the Creep Resistance for TATB/HMX Composites. Propellants, Explos., Pyrotech. 2017, 42: 1-9.
  • [35] Singh, A.; Singh, S.; Sharma, T.C.; Kishore, P. Physicochemical Properties and Kinetic analysis for Some Fluoropolymers by Differential Scanning Calorimetry. Polym. Bull. 2018, 75: 2315-2338.
  • [36] Singh, A.; Soni, P.K.; Shekharam, T.; Srivastava, A. A Study on Thermal Behaviour of a Poly(VDF-CTFE) Copolymers Binder for High Energy Materials. J. Appl. Polym. Sci. 2013, 127(3): 1751-1757.
  • [37] Singh A.; Soni, P.K.; Singh, M.; Srivastava, A. Thermal Degradation, Kinetic and Correlation Models of Poly(Vinylidene-Fluoride–Chlorotrifluoroethylene) Copolymers. Thermochim. Acta 2012, 548: 88-92.
  • [38] Singh, A.; Soni, P.K.; Sarkar, C.; Mukherjee, N. Thermal Reactivity of Aluminized Polymer-Bonded Explosives Based on Non-isothermal Thermogravimetry and Calorimetry Measurements. J. Therm. Anal. Calorim. 2019, 136: 102110-102135.
  • [39] Kumar, R.; Singh, A.; Kumar, M.; Soni, P.K.; Singh, V. Investigations of Effect of Hydroxyl-Terminated Polybutadiene-Based Polyurethane Binders Containing Various Curatives on Thermal Decomposition Behaviour and Kinetics of Energetic Composites. J. Therm. Anal. Calorim. 2020, https://doi.org/10.1007/s10973-020-09773-x.
  • [40] Singh, A.; Kumar R.; Soni, P.K.; Singh, V. Investigation of the Effect of Diisocyanate on the Thermal Degradation Behavior and Degradation Kinetics of Polyether-Based Polyurethanes. J. Macromol. Sci., Part B: Phys. 2020, DOI:10.1080/00222348.2020.1802850.
  • [41] Chen, C.Y.; Gao, L.L; Wang, X.F. Effects of HTPB with Different Molecular Weight on Mechanical Properties of HTPB/TDI System. Adv. Mater. Res. 2013, 811: 19-22.
  • [42] Gautam, P.C.; Goel, G.; Khurana, R.; Sharma, A.C.; Singh, M. Electrical Techniques for Measurement of Detonics Parameters of High Explosives. International High Energy Materials Conference and Exhibit, HEMCE-11, 8th, TBRL, Chandigarh, India, 2011.
  • [43] Julius-Peters, K.G. Proceedings of the Production Programme of Julius-Peters Company for the Members of MBB Course-81. Berlin, Germany, 1921, 14.
  • [44] Johansen, O.H.; Kristiansen, J.D.; Giersoe, R.; Berg, A.; Halvorsen, T.; Smith, K.; Nevstad, G.O. RDX and HMX with Reduced Sensitivity towards Shock Initiation–RS‐RDX and RS‐HMX. Propellants, Explos., Pyrotech. 2008, 33(1): 20-24.
  • [45] Pruneda, C.O.; Bower, J.K.; Kolb, J.R. Polymeric Coatings Effect on Energy and Sensitivity of High Explosives. Org. Coat. Plast. Chem. 1980, 42: 588-594.
  • [46] Doherty, R.M.; Watt, D.S. Relationship between RDX Properties and Sensitivity. Propellants, Explos., Pyrotech. 2008, 33(1): 4-13.
  • [47] Keshavarz, M.H.; Pouretedal, H.R. Simple Empirical Method for Prediction of Impact Sensitivity of Selected Class of Explosives. J. Hazard. Mater. 2005, 124:27-33.
  • [48] Keshavarz, M.H.; Jaafari, M. Investigation of the Various Structure Parameters for Predicting Impact Sensitivity of Energetic Molecules via Artificial Neural Network. Propellants, Explos., Pyrotech. 2006, 31: 216-225.
  • [49] Keshavarz, M.H. Prediction of Impact Sensitivity of Nitroaliphatic, Nitroaliphatic Containing other Functional Groups and Nitrate Explosives. J. Hazard. Mater. 2007, 148: 648-652.
  • [50] Kamlet, M.J.; Adolph, H.G. The Relationship of Impact Sensitivity with Structure of Organic High Explosives. II. Polynitroaromatic Explosives. Propellants, Explos., Pyrotech. 1979, 4: 30-34.
  • [51] Agrawal, J.P. Recent Trends in High-energy Materials. Progr. Energy Combust. Sci. 1998, 24: 1-30.
  • [52] Samudre, S.S.; Nair, U.R.; Gore, G.M.; Sinha, R.K.; Sikder, A.K.; Asthana, S.N. Studies on an Improved Plastic Bonded Explosive (PBX) for Shaped Charges. Propellants, Explos., Pyrotech. 2009, 34: 145-150.
  • [53] Palmer, S.J.; Field, J.E.; Huntley, J.M. Deformation, Strengths and Strains to Failure of Polymer Bonded Explosives. Royal Soc. Proc. 1993, 440: 399-419.
  • [54] Cady, C.M.; Blumenthal, W.R.; Gray, G.T.; Idar, D.J. Mechanical Properties of Plastic‐Bonded Explosive Binder Materials as a Function of Strain‐Rate and Temperature. Polym. Eng. Sci. 2006, 46: 812-819.
  • [55] Thompson, D.G.; DeLuca, R. Quasi-Static Tension and Compression of Pressed PBX 9501 after Accelerated Aging. 25th Aging, Compatibility and Stockpile Stewardship Conference, Lawrence Livermore National Laboratory, UCRLPROC-200783, Livermore, CA, 2003, p. 137.
  • [56] Vermillion, J.L.; Dubberly, R.C. Plastic Bonded RDX: Its Preparation by the Slurry Method. Holston Defense Corporation, Kingsport Holston Defense Corporation, Report No. 20-T-16, 1953.
  • [57] Kilgore, W.R.; DiMaggio, J.J. Plastic Bonded HMX: Its Preparation by the Slurry Method. Holston Defense Corporation, Kingsport, Report No. 20-T-21, 1955.
  • [58] Smith, H.M.; Puddington, I.E. Spherical Agglomeration of Barium Sulphate. Can. J. Chem. 1960, 38: 1911-1916.
  • [59] Farnand, J.R.; Smith, H.M.; Puddington, I.E. Spherical Agglomeration of Solids in Liquid Suspension. Can. J. Chem. Eng. 1961, 39: 94-97.
  • [60] Capes, C.E.; Sutherland, J.P. Formation of Spheres from Finely Divided Solids in Liquid Suspension. Ind. Eng. Chem. Process Des. Dev. 1967, 6: 146-154.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ac76ecb-f21a-4b36-a3cb-4a142f924b39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.